Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(11)2023 May 25.
Article in English | MEDLINE | ID: mdl-37299249

ABSTRACT

This study investigated the mechanical and tribological properties of 3D-printed Poly (lactic acid) (PLA) composites reinforced with different concentrations of carbon fibers (SCF) and graphene nanoparticles (GNP) (0.5 to 5 wt.% of each filler). The samples were produced using FFF (fused filament fabrication) 3D printing. The results showed a good dispersion of the fillers in the composites. SCF and GNP promoted the crystallization of the PLA filaments. The hardness, elastic modulus, and specific wear resistance grew with the increase in the filler concentration. A hardness improvement of about 30% was observed for the composite with 5 wt.% of SCF + 5 wt.% GNP (PSG-5) compared to PLA. The same trend was observed for the elastic modulus with an increase of 220%. All the composites presented lower coefficients of friction (0.49 to 0.6) than PLA (0.71). The composite PSG-5 sample showed the lowest value of specific wear rate (4.04 × 10-4 mm3/N.m), corresponding to about a five times reduction compared to PLA. Therefore, it was concluded that the addition of GNP and SCF to PLA made it possible to obtain composites with better mechanical and tribological behavior.

SELECTION OF CITATIONS
SEARCH DETAIL
...