Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
Cancer Lett ; 585: 216662, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38309614

ABSTRACT

Maintaining cellular homeostasis relies on the interplay between apoptosis and autophagy, and disruption in either of these processes can contribute to the development of cancer. Autophagy can hinder the apoptotic process, and when autophagy is inhibited in such instances, it can enhance the rate of apoptosis. However, evidence suggests that excessive autophagy can also lead to apoptotic cell death. Also, excess autophagy can cause excessive digestion of cellular organelles, causing autophagic cell death. Targeting autophagy in non-small cell lung cancer (NSCLC), the most common form of lung cancer, can be very tricky due to the dual nature of autophagy. According to genetic analysis, various mutations in p53 and EGFR, G:C to A:T transversions seem responsible for the development of lung cancer in smokers and non-smokers. These events trigger cytoprotective autophagy or induce apoptotic cell death through different but interconnected signalling pathways. Lung cancer being the leading cause of death worldwide, calls for more attention to disease prognosis and new therapeutics in the market. However, molecules responsible for autophagy to apoptosis transition are yet to be studied elaborately. Also, the role of effector caspases during this shift needs to be elucidated in future. To comprehend how therapeutics operate through the modulation of autophagy and apoptosis and to target such pathways, it is crucial to emphasize these intricate connections. Many therapeutics discussed in this review targeting both apoptosis and autophagy have shown promising results in vitro and in vivo, however, few have crossed the hurdles of clinical trial. Nevertheless, the quest for safer and better efficacious agents is still alive, with the sole aim to develop novel cancer chemotherapeutic(s).


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Apoptosis/genetics , Signal Transduction , Autophagy/genetics , Cell Line, Tumor
2.
Toxicol In Vitro ; 93: 105703, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37751786

ABSTRACT

OBJECTIVE: Deuterium oxide (D2O) or heavy water is known to have diverse biological activities and have a few therapeutic applications due to its limited toxicity to human subjects. In the present study, we investigated the mechanism of D2O-induced cytotoxicity in non-small cell lung cancer A549 cells. RESULTS: We found that D2O-treatment resulted in cytotoxicity, cell cycle arrest, and apoptosis in A549 cells in a dose-dependent fashion. In contrast, limited cytotoxicity was observed in lung fibroblasts WI38 cells. Moreover, D2O-treatment resulted in the disruption of the cellular microtubule network, accompanied by the generation of ROS. On further investigation, we observed that the intracellular ROS triggered autophagic responses in D2O-treated cells, leading to apoptosis by inhibiting the oncogenic PI3K/ Akt/ mTOR signaling. D2O-treatment was also found to enhance the efficacy of paclitaxel in A549 cells. SIGNIFICANCE: D2O induces autophagy-dependent apoptosis in A549 cells via ROS generation upon microtubule depolymerization and inhibition of PI3K/ Akt/ mTOR signaling. It augments the efficacy of other microtubule-targeting anticancer drug taxol, which indicates the potential therapeutic importance of D2O as an anticancer agent either alone or in combination with other chemotherapeutic drugs.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Reactive Oxygen Species/metabolism , A549 Cells , Deuterium Oxide/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , TOR Serine-Threonine Kinases/metabolism , Apoptosis , Autophagy , Microtubules , Phosphatidylinositol 3-Kinases/metabolism
3.
Curr Drug Deliv ; 20(10): 1441-1464, 2023.
Article in English | MEDLINE | ID: mdl-36200202

ABSTRACT

COVID-19 pandemic is the biggest global crisis. The frequent mutations in coronavirus to generate new mutants are of major concern. The pathophysiology of SARS-CoV-2 infection has been well studied to find suitable molecular targets and candidate drugs for effective treatment. FDArecommended etiotropic therapies are currently followed along with mass vaccination. The drug delivery system and the route of administration have a great role in enhancing the efficacy of therapeutic agents and vaccines. Since COVID-19 primarily infects the lungs in the affected individuals, pulmonary administration may be the best possible route for the treatment of COVID-19. Liposomes, solid lipid nanoparticles, polymeric nanoparticles, porous microsphere, dendrimers, and nanoparticles encapsulated microparticles are the most suitable drug delivery systems for targeted drug delivery. The solubility, permeability, chemical stability, and biodegradability of drug molecules are the key factors for the right selection of suitable nanocarriers. The application of nanotechnology has been instrumental in the successful development of mRNA, DNA and subunit vaccines, as well as the delivery of COVID-19 therapeutic agents.


Subject(s)
COVID-19 , Humans , Pandemics/prevention & control , SARS-CoV-2 , Drug Delivery Systems , COVID-19 Vaccines
4.
Sci Rep ; 12(1): 6241, 2022 04 14.
Article in English | MEDLINE | ID: mdl-35422113

ABSTRACT

Recently published clinical data from COVID-19 patients indicated that statin therapy is associated with a better clinical outcome and a significant reduction in the risk of mortality. In this study by computational analysis, we have aimed to predict the possible mechanism of the statin group of drugs by which they can inhibit SARS-CoV-2 pathogenesis. Blind docking of the critical structural and functional proteins of SARS-CoV-2 like RNA-dependent RNA polymerase, M-protease of 3-CL-Pro, Helicase, and the Spike proteins ( wild type and mutants from different VOCs) were performed using the Schrodinger docking tool. We observed that fluvastatin and pitavastatin showed fair, binding affinities to RNA polymerase and 3-CL-Pro, whereas fluvastatin showed the strongest binding affinity to the helicase. Fluvastatin also showed the highest affinity for the SpikeDelta and a fair docking score for other spike variants. Additionally, molecular dynamics simulation confirmed the formation of a stable drug-protein complex between Fluvastatin and target proteins. Thus our study shows that of all the statins, fluvastatin can bind to multiple target proteins of SARS-CoV-2, including the spike-mutant proteins. This property might contribute to the potent antiviral efficacy of this drug.


Subject(s)
COVID-19 Drug Treatment , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Antiviral Agents/therapeutic use , Fluvastatin/pharmacology , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2
5.
Biochim Biophys Acta Gen Subj ; 1865(8): 129931, 2021 08.
Article in English | MEDLINE | ID: mdl-34023444

ABSTRACT

BACKGROUND: Increasing antibiotic-resistance in bacterial strains has boosted the need to find new targets for drug delivery. FtsA, a major bacterial divisome protein can be a potent novel drug-target. METHODS AND RESULTS: This study finds, morin (3,5,7,2',4'-pentahydroxyflavone), a bio-available flavonoid, had anti-bacterial activities against Vibrio cholerae, IC50 (50 µM) and MIC (150 µM). Morin (2 mM) kills ~20% of human lung fibroblast (WI38) and human intestinal epithelial (HIEC-6) cells in 24 h in-vitro. Fluorescence studies showed morin binds to VcFtsA (FtsA of V. cholerae) with a Kd of 4.68 ± 0.4 µM, inhibiting the protein's polymerization by 72 ± 7% at 25 µM concentration. Morin also affected VcFtsA's ATPase activity, recording ~80% reduction at 20 µM concentration. The in-silico binding study indicated binding sites of morin and ATP on VcFtsA had overlapping amino acids. Mant-ATP, a fluorescent ATP-derivative, showed increased fluorescence on binding to VcFtsA in absence of morin, but in its presence, Mant-ATP fluorescence decreased. VcFtsA-S40A mutant protein did not bind to morin. CONCLUSIONS: VcFtsA-morin interaction inhibits the polymerization of the protein by affecting its ATPase activity. The destabilized VcFtsA assembly in-turn affected the cell division in V. cholerae, yielding an elongated morphology. GENERAL SIGNIFICANCE: Collectively, these findings explore the anti-bacterial effect of morin on V. cholerae cells targeting VcFtsA, encouraging it to become a potent anti-bacterial agent. Low cytotoxicity of morin against human cells (host) is therapeutically advantageous. This study will also help in synthesizing novel derivatives that can target VcFtsA more efficiently.


Subject(s)
Adenosine Triphosphate/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Flavonoids/pharmacology , Gene Expression Regulation, Bacterial , Vibrio cholerae/drug effects , Bacterial Proteins/genetics , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/microbiology , Humans , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Lung/drug effects , Lung/metabolism , Lung/microbiology , Protein Binding , Vibrio cholerae/metabolism
6.
Biochim Biophys Acta Mol Cell Res ; 1867(10): 118762, 2020 10.
Article in English | MEDLINE | ID: mdl-32502617

ABSTRACT

BACKGROUND: Microtubules, the key components of the eukaryotic cytoskeleton and mitotic spindle, are one of the most sought-after targets for cancer chemotherapy, especially due to their indispensible role in mitosis. Cervical cancer is a prevalent malignancy among women of developing countries including India. In spite of the remarkable therapeutic advancement, the non-specificity of chemotherapeutic drugs adversely affect the patients' survival and well-being, thus, necessitating the quest for novel indole-based anti-microtubule agent against cervical cancer, with high degree of potency and selectivity. METHODS: For in vitro studies, we used MTT assay, confocal microscopy, fluorescence microscopy, flow cytometry and Western blot analysis. Study in cell free system was accomplished by spectrophotometry, fluorescence spectroscopy and TEM and computational analysis was done by AutodockTools 1.5.6. RESULTS: NMK-BH2 exhibited significant and selective anti-proliferative activity against cervical cancer HeLa cells (IC50 = 1.5 µM) over normal cells. It perturbed the cytoskeletal and spindle microtubules of HeLa cells leading to mitotic block and cell death by apoptosis and autophagy. Furthermore, NMK-BH2 targeted the tubulin-microtubule system through fast and strong binding to the αß-tubulin heterodimers at colchicine-site. CONCLUSION: This study identifies and characterises NMK-BH2 as a novel anti-microtubule agent and provides insights into its key anti-cancer mechanism through two different cell death pathways: apoptosis and autophagy, which are mutually independent. GENERAL SIGNIFICANCE: It navigates the potential of the novel bis (indolyl)-hydrazide-hydrazone, NMK-BH2, to serve as lead for development of new generation microtubule-disrupting chemotherapeutic with improved efficacy and remarkable selectivity towards better cure of cervical cancer.


Subject(s)
Apoptosis/drug effects , Autophagy/drug effects , Colchicine/metabolism , Hydrazones/pharmacology , Microtubules/metabolism , Polymerization , Tubulin/metabolism , Uterine Cervical Neoplasms/pathology , Animals , Binding Sites , Biomarkers, Tumor/metabolism , Cell Proliferation/drug effects , Cell-Free System , Computer Simulation , Female , Goats , HeLa Cells , Humans , Hydrazones/chemistry , Kinetics , Ligands , Membrane Potential, Mitochondrial/drug effects , Microtubules/drug effects , Microtubules/ultrastructure , Mitosis/drug effects , Spectrometry, Fluorescence , Spindle Apparatus/drug effects , Spindle Apparatus/metabolism , Tubulin/chemistry
7.
Phytomedicine ; 67: 153152, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31887479

ABSTRACT

BACKGROUND: Lung cancer is the leading cause of cancer-related deaths worldwide. Several targets have been identified for lung cancer therapy, amongst which 'Microtubule' and its dynamics are the most widely studied and used in therapy. Tubulin-microtubule polymer dynamics are highly sought after targets in the field of anti-cancer drug designing. Natural compounds are important sources for developing anticancer therapeutics owing to their efficacy and lower cytotoxicity. Evidence suggested that therapeutic targeting of microtubule by natural compounds is amongst the most widely used interventions in numerous cancer therapies including lung cancer. PURPOSE: To determine the efficacy of apocynin (a natural compound) in suppressing the progression of lung carcinoma both in vitro and in vivo, along with the identification of targets and the underlying mechanism for developing a novel therapeutic approach. METHODS: We have demonstrated themicrotubule depolymerizing role of apocynin by established protocols in cellular and cell-free system. The efficacy of apocynin to inhibit lung carcinoma progression was studied on A549 cells.The tumoricidal ability of apocynin was studied in BALB/c mice model as well.Mice were classified into 4 groups namely-group II mice as tumor control; group III-IV mice asalso tumor-induced but treated with differential apocynin doses whereas group I mice were kept as normal. RESULTS: Apocynin, showed selective cytotoxicity towards lung cancer cells rather than normal lung fibroblast cells. Apocynin inhibited oncogenic properties including growth, proliferation (p < 0.05), colony formation (p < 0.05), invasion (p < 0.05) and spheroid formation (p < 0.05) in lung cancer cells. Apart from other established properties, apocynin was found to be a novel and potent component to bind with tubulin and depolymerize cellular microtubule network. Apocynin mediated cellular microtubule depolymerization was the driving mechanism to trigger autophagy-mediated apoptotic cell death (p < 0.05) which in turn retarded lung cancer progression. Furthermore, apocynin showed tumoricidal characteristics to inhibit lung tumorigenesis in mice as well. CONCLUSION: Targeting tubulin-microtubule equilibrium with apocynin could be the key regulator to catastrophe cellular catabolic processes to mitigate lung carcinoma. Thus, apocynin could be a potential therapeutic agent for lung cancer treatment.


Subject(s)
Acetophenones/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Lung Neoplasms/drug therapy , Tubulin Modulators/pharmacology , A549 Cells , Acetophenones/chemistry , Animals , Antineoplastic Agents, Phytogenic/chemistry , Cell Line, Tumor , Humans , Lung Neoplasms/pathology , Male , Mice, Inbred BALB C , Microtubules/metabolism , Neoplasms, Experimental/chemically induced , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Tubulin/chemistry , Tubulin/metabolism , Tubulin Modulators/chemistry
8.
Mater Sci Eng C Mater Biol Appl ; 106: 110160, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31753371

ABSTRACT

Cu-Ag-ZnO nanocomposite (NC) has been successfully synthesized by mechanical alloying the Cu, Zn and Ag powder mixture under Ar atmosphere within 4 h of milling. The nanocomposite is then conjugated with the antifungal drug fluconazole by adding 5 wt% powdered drug to the NC and mechanical alloying the total powder mixture for one more hour. The Rietveld refinement of XRD data and FTIR spectrum analyses reveal the detailed structural and microstructural characterizations of the nanocomposite-drug conjugate (NC-DC). Presence of Cu, Ag, ZnO and drug in the 5 h milled powder are confirmed by analyzing TEM images and FESEM-EDS spectrum. Results obtained from FESEM and TEM images reveal the measure of particle size of the nanocomposite-drug conjugate and it agrees well with the crystallite size obtained from the Rietveld refinement. A significant antifungal activity of NC-DC against Candida sp. fungi has been revealed using disk agar diffusion method. Minimum inhibitory concentration (MIC) test confirms that NC-DC with only 5 wt% fluconazole produces similar antifungal activity of the pure (100 wt%) and conventional fluconazole. Thus, the conjugation of conventional drug to a nanocomposite results in enhancement of drug efficiency by a factor 20 folds. This is very important, particularly, for those antibiotics which are very effective in controlling several epidemic diseases but show intense side effects when used at higher dose and/or for a longer duration.


Subject(s)
Antifungal Agents/chemistry , Copper/chemistry , Fluconazole/chemistry , Nanocomposites/chemistry , Silver/chemistry , Zinc Oxide/chemistry , Antifungal Agents/pharmacology , Candida/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Fluconazole/pharmacology , Humans , Microbial Sensitivity Tests , Particle Size
9.
Int J Biol Macromol ; 142: 18-32, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31790740

ABSTRACT

Proper interaction between the divisome proteins FtsA and FtsZ is important for the bacterial cell division which is not well characterized till date. In this study, the objective was to understand the mechanism of FtsA-FtsZ interaction using full-length recombinant proteins. We cloned, over-expressed, purified and subsequently characterized FtsA of Vibrio cholerae (VcFtsA). We found that VcFtsA polymerization assembly was dependent on Ca2+ ions, which is unique among FtsA proteins reported until now. VcFtsA also showed ATPase activity and its assembly was ATP dependent. Binding parameters of the interaction between the two full-length proteins, VcFtsA, and VcFtsZ determined by fluorescence spectrophotometry yielded a Kd value of around 38 µM. The Kd value of the interaction was 3 µM when VcFtsA was in ATP bound state. We found that VcFtsZ after interacting with VcFtsA causes a change of secondary structure in the later one leading to loss of its ability to hydrolyze ATP, subsequently halting the VcFtsA polymerization. On the other hand, a double-mutant of VcFtsA (VcFtsA-D242E,R300E), that does not bind to VcFtsZ, polymerized in the presence of VcFtsZ. Though FtsA proteins among different organisms show 70-80% homology in their sequences, assembly of VcFtsA showed a difference in its regulatory processes.


Subject(s)
Adenosine Triphosphate/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Cytoskeletal Proteins/chemistry , Polymerization , Vibrio cholerae/metabolism , Amino Acid Sequence , Bacterial Proteins/genetics , Calcium , Cloning, Molecular , Cytoskeletal Proteins/metabolism , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Recombinant Proteins , Sequence Analysis, Protein
10.
Nanomedicine (Lond) ; 14(16): 2121-2150, 2019 08.
Article in English | MEDLINE | ID: mdl-31411540

ABSTRACT

Aim: Paclitaxel (PTX) has no clinically available oral formulations. Cetyl alcohol is metabolized by alcohol dehydrogenase and aldehyde dehydrogenase that are overexpressed in cancer cells. So, PTX-encapsulated core-shell nanoparticle of cetyl alcohol (PaxSLN) could target the cancer cells through oral route. Materials & methods: PaxSLN was synthesized using microemulsion template. Efficiency of PaxSLN was evaluated by ALDEFLUOR™, multicellular tumor spheroid formation inhibition assays and CT26 colorectal carcinoma animal model. Pharmacokinetics and biodistribution studies were done in Sprague Dawley rats. Results: PTX was encapsulated at the core of approximately 78 nm PaxSLN. PaxSLN targeted aldehyde dehydrogenase overexpressing cells. Its oral bioavailability was approximately 95% and chemotherapeutic efficacy was better than Taxol® and nab-PTX. Conclusion: A novel oral nanoformulation of PTX was developed.


Subject(s)
Fatty Alcohols/chemistry , Nanoparticles/chemistry , Paclitaxel/chemistry , A549 Cells , Administration, Oral , Animals , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/therapeutic use , Colorectal Neoplasms/drug therapy , Flow Cytometry , Humans , Male , Mice , Mice, Inbred BALB C , Paclitaxel/administration & dosage , Paclitaxel/therapeutic use , Rats , Rats, Sprague-Dawley , Spectroscopy, Fourier Transform Infrared , Spheroids, Cellular/cytology , Spheroids, Cellular/drug effects
11.
Apoptosis ; 24(5-6): 434, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30923989

ABSTRACT

The original version of this article unfortunately contained an error in acknowledgment text. The authors would like to include a statement: "Moumita Dasgupta is supported by Junior Research Fellowship from University Grant Commission, India." in acknowledgment section.

12.
J Biol Chem ; 294(17): 6733-6750, 2019 04 26.
Article in English | MEDLINE | ID: mdl-30824542

ABSTRACT

Notch signaling is reported to be deregulated in several malignancies, including breast, and the enzyme γ-secretase plays an important role in the activation and nuclear translocation of Notch intracellular domain (NICD). Hence, pharmacological inhibition of γ-secretase might lead to the subsequent inhibition of Notch signaling in cancer cells. In search of novel γ-secretase inhibitors (GSIs), we screened a series of triazole-based compounds for their potential to bind γ-secretase and observed that 3-(3'4',5'-trimethoxyphenyl)-5-(N-methyl-3'-indolyl)-1,2,4-triazole compound (also known as NMK-T-057) can bind to γ-secretase complex. Very interestingly, NMK-T-057 was found to inhibit proliferation, colony-forming ability, and motility in various breast cancer (BC) cells such as MDA-MB-231, MDA-MB-468, 4T1 (triple-negative cells), and MCF-7 (estrogen receptor (ER)/progesterone receptor (PR)-positive cell line) with negligible cytotoxicity against noncancerous cells (MCF-10A and peripheral blood mononuclear cells). Furthermore, significant induction of apoptosis and inhibition of epithelial-to-mesenchymal transition (EMT) and stemness were also observed in NMK-T-057-treated BC cells. The in silico study revealing the affinity of NMK-T-057 toward γ-secretase was further validated by a fluorescence-based γ-secretase activity assay, which confirmed inhibition of γ-secretase activity in NMK-T-057-treated BC cells. Interestingly, it was observed that NMK-T-057 induced significant autophagic responses in BC cells, which led to apoptosis. Moreover, NMK-T-057 was found to inhibit tumor progression in a 4T1-BALB/c mouse model. Hence, it may be concluded that NMK-T-057 could be a potential drug candidate against BC that can trigger autophagy-mediated cell death by inhibiting γ-secretase-mediated activation of Notch signaling.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Autophagy/drug effects , Breast Neoplasms/pathology , Receptors, Notch/metabolism , Signal Transduction , Triazoles/pharmacology , Amyloid Precursor Protein Secretases/metabolism , Animals , Apoptosis/drug effects , Breast Neoplasms/enzymology , Breast Neoplasms/metabolism , Carcinogenesis/drug effects , Cell Line, Tumor , Down-Regulation/drug effects , Epithelial-Mesenchymal Transition/drug effects , Humans , Mice , Mice, Inbred BALB C , Xenograft Model Antitumor Assays
13.
Apoptosis ; 24(5-6): 414-433, 2019 06.
Article in English | MEDLINE | ID: mdl-30767087

ABSTRACT

Paclitaxel is one of the most commonly used drugs for the treatment of nonsmall cell lung cancer (NSCLC). However acquired resistance to paclitaxel, epithelial to mesenchymal transition and cancer stem cell formation are the major obstacles for successful chemotherapy with this drug. Some of the major reasons behind chemoresistance development include increased ability of the cancer cells to survive under stress conditions by autophagy, increased expression of drug efflux pumps, tubulin mutations etc. In this study we found that inhibition of autophagy with chloroquine prevented development of paclitaxel resistance in A549 cells with time and potentiated the effect of paclitaxel by increased accumulation of superoxide-producing damaged mitochondria, with elevated ROS generation, it also increased the apoptotic rate and sub G0/ G1 phase arrest with time in A549 cells treated with paclitaxel and attenuated the metastatic potential and cancer stem cell population of the paclitaxel-resistant cells by ROS mediated modulation of the Wnt/ß-catenin signaling pathway, thereby increasing paclitaxel sensitivity. ROS here played a crucial role in modulating Akt activity when autophagy process was hindered by chloroquine, excessive ROS accumulation in the cell inhibited Akt activity. In addition, chloroquine pre-treatment followed by taxol (10 nM) treatment did not show significant toxicity towards non-carcinomas WI38 cells (lung fibroblast cells). Thus autophagy inhibition by CQ pre-treatment can be used as a fruitful strategy to combat the phenomenon of paclitaxel resistance development as well as metastasis in lung cancer.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Autophagy/drug effects , Chloroquine/pharmacology , Drug Resistance, Neoplasm/drug effects , Paclitaxel/pharmacology , Reactive Oxygen Species/metabolism , beta Catenin/metabolism , A549 Cells , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line , Cell Survival/drug effects , Dose-Response Relationship, Drug , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Proto-Oncogene Proteins c-akt/metabolism , Wnt Signaling Pathway/drug effects
14.
PLoS One ; 14(1): e0209435, 2019.
Article in English | MEDLINE | ID: mdl-30625181

ABSTRACT

Metformin, a widely prescribed anti-diabetic drug, shows anticancer activity in various cancer types. Few studies documented that there was a decreased level of LDL and total cholesterol in blood serum of metformin users. Based on these views, this study aimed to determine if metformin exhibits anticancer activity by alleviating cholesterol level in cancer cells. The present study found that treatment of breast cancer MDA-MB-231 cells with metformin significantly decreased cholesterol content with concomitant inhibition of various cholesterol regulatory genes (e.g., HMGCoR, LDLR and SREBP1). Metformin decreased cell viability, migration and stemness in metastatic MDA-MB-231 cells. Similarly, metformin treatment suppressed expressions of anti-apoptotic genes BCL2 and Bcl-xL, and mesenchymal genes vimentin, N-cadherin, Zeb1 and Zeb2 with simultaneous enhancement of apoptotic caspase 3 and Bax, and epithelial genes E-cadherin and keratin 19 expressions, confirming an inhibitory effect of metformin in tumorigenesis. Similar to metformin, depletion of cholesterol by methyl beta cyclodextrin (MBCD) diminished cell viability, migration, EMT and stemness in breast cancer cells. Moreover, metformin-inhibited cell viability, migration, colony and sphere formations were reversed back by cholesterol treatment. Similarly, cholesterol treatment inverted metformin-reduced several gene expressions (e.g., Bcl-xL, BCL2, Zeb1, vimentin, and BMI-1). Additionally, zymography data demonstrated that cholesterol upregulated metformin-suppressed MMP activity. These findings suggested that metformin revealed anticancer activity by lowering of cholesterol content in breast cancer cells. Thus, this study, for the first time, unravelled this additional mechanism of metformin-mediated anticancer activity.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Cholesterol/metabolism , Metformin/pharmacology , Apoptosis/drug effects , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement/drug effects , Cell Survival/drug effects , Cholesterol/genetics , Cholesterol/pharmacology , Epithelial-Mesenchymal Transition/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Tumor Stem Cell Assay
15.
Nanomedicine ; 15(1): 47-57, 2019 01.
Article in English | MEDLINE | ID: mdl-30213518

ABSTRACT

Little is known about insulin's wound healing capability in normal as well as diabetic conditions. We here report specific interaction of silver nanoparticles (AgNPs) with insulin by making a ~2 nm thick coat around the AgNPs and its potent wound healing efficacy. Characterization of the interaction of human insulin with silver nanoparticles showed confirmed alteration of amide-I in insulin whereas amide-II and III remained unaltered. Further, nanoparticles protein interaction kinetics showed spontaneous interaction at physiological temperature with ΔG, ΔS, Ea and Ka values -7.48, 0.076, 3.84 kcal mol-1 and 6 × 105 s-1 respectively. Insulin loaded AgNPs (IAgNPs) showed significant improvement in healing activity in vitro (HEKa cells) and in vivo (Wister Rats) in comparison with the control in both normal and diabetic conditions. The underlying mechanism was attributed to a regulation of the balance between pro (IL-6, TNFα) and anti-inflammatory cytokines (IL-10) at the wound site to promote faster wound remodeling.


Subject(s)
Cytokines/metabolism , Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/pharmacology , Insulin/pharmacology , Metal Nanoparticles/administration & dosage , Wound Healing , Animals , Cell Movement , Diabetes Mellitus, Experimental/metabolism , Drug Compounding , Drug Delivery Systems , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/chemistry , Inflammation Mediators/metabolism , Insulin/administration & dosage , Insulin/chemistry , Male , Metal Nanoparticles/chemistry , Rats , Rats, Wistar , Silver/chemistry
16.
J Cell Biochem ; 120(4): 5987-6003, 2019 04.
Article in English | MEDLINE | ID: mdl-30390323

ABSTRACT

Theaflavin (TF) and epigallocatechin-3-gallate (EGCG) both have been reported previously as microtubule depolymerizing agents that also have anticancer effects on various cancer cell lines and in animal models. Here, we have applied TF and EGCG in combination on HeLa cells to investigate if they can potentiate each other to improve their anticancer effect in lower doses and the underlying mechanism. We found that TF and EGCG acted synergistically, in lower doses, to inhibit the growth of HeLa cells. We found the combination of 50 µg/mL TF and 20 µg/mL EGCG to be the most effective combination with a combination index of 0.28. The same combination caused larger accumulation of cells in the G 2 /M phase of the cell cycle, potent mitochondrial membrane potential loss, and synergistic augmentation of apoptosis. We have shown that synergistic activity might be due to stronger microtubule depolymerization by simultaneous binding of TF and EGCG at different sites on tubulin: TF binds at vinblastine binding site on tubulin, and EGCG binds near colchicines binding site on tubulin. A detailed mechanistic analysis revealed that stronger microtubule depolymerization caused effective downregulation of PI3K/Akt signaling and potently induced mitochondrial apoptotic signals, which ultimately resulted in the apoptotic death of HeLa cells in a synergistic manner.


Subject(s)
Antioxidants/pharmacology , Apoptosis/drug effects , Biflavonoids/pharmacology , Catechin/analogs & derivatives , Microtubules/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Polymerization/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Animals , Antioxidants/metabolism , Biflavonoids/metabolism , Binding Sites , Catechin/metabolism , Catechin/pharmacology , Cell Proliferation/drug effects , Drug Synergism , G2 Phase Cell Cycle Checkpoints/drug effects , Goats , HeLa Cells , Humans , M Phase Cell Cycle Checkpoints/drug effects , Membrane Potential, Mitochondrial/drug effects , Signal Transduction/drug effects , Tubulin/isolation & purification , Tubulin/metabolism
17.
Eur J Pharm Sci ; 124: 249-265, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30170210

ABSTRACT

A novel library of C2-substituted tryptamines (based on diverse C2-aroyl/arylimino indoles and indole-diketopiperazine hybrids) possessing antimitotic properties were designed, synthesized and screened for their inhibitory activity against tubulin polymerization, and against proliferation of A549 lung cancer, HeLa cervical cancer, MCF7 breast cancer and HePG2 liver cancer cell lines. The design of molecules were inspired from known antimitotic compounds and natural products. The molecular docking of the designed compounds indicated that they bind to the colchicin binding site of tubulin. They were synthesized by a unique iodine catalysed oxidative ring opening reaction of 1-aryltetrahydro-ß-carbolines. Among the compounds synthesized quite a few compounds induced cytotoxicity on the cancer cells by disrupting the tubulin polymerization. They were found to be non-toxic for healthy cells. Immuno Fluorescence study for the most active molecules (between ~6 µM concentration) against A549 and HeLa cells demonstrated complete disruption and shrinkage of the microtubule structures. These compounds also inhibited indoleamine-2, 3-dioxygenase with low micromolar IC50.


Subject(s)
Antimitotic Agents , Dioxygenases/antagonists & inhibitors , Tryptamines , Tubulin Modulators , Antimitotic Agents/chemistry , Antimitotic Agents/pharmacology , Cell Line , Dioxygenases/metabolism , Humans , Molecular Docking Simulation , Tryptamines/chemistry , Tryptamines/pharmacology , Tubulin/metabolism , Tubulin Modulators/chemistry , Tubulin Modulators/pharmacology
18.
J Phys Chem B ; 122(14): 3680-3695, 2018 04 12.
Article in English | MEDLINE | ID: mdl-29561610

ABSTRACT

In the development of small-molecule drug candidates, naphthalimide-based compounds hold a very important position as potent anticancer agents with considerable safety in drug discoveries. Being synthetically and readily accessible, naphthalimide compounds with planar architecture have been developed mostly as DNA-targeting intercalators. However, in this article, it is demonstrated, for the first time, that an unfused naphthalimide-benzothiazole bichromophoric compound 2-(6-chlorobenzo[ d] thiazol-2-yl)-1 H-benzo[ de] isoquinoline-1,3(2 H)-dione (CBIQD), seems to expand the bioactivity of naphthalimide as anti-mitotic agent also. Preliminary studies demonstrate that CBIQD interferes with human lung cancer (A549) cell proliferation and growth and causes cellular morphological changes. However, the underlying mechanism of its antitumor action and primary cellular target in A549 cells remained skeptical. Confocal microscopy in A549 cells revealed disruption of interphase microtubule (MT) network and formation of aberrant multipolar spindle. Consistent with microscopy results, UV-vis, steady-state fluorescence, and time-resolved fluorescence (TRF) studies demonstrate that CBIQD efficiently binds to tubulin ( Kb = 2.03 × 105 M-1 ± 1.88%), inhibits its polymerization, and depolymerizes preformed microtubules (MTs). Low doses of CBIQD have also shown specificity toward tubulin protein in the presence of a nonspecific protein like bovine serum albumin as well as other cytoskeleton component, actin. The in vitro determination of binding site coupled with in silico studies suggests that CBIQD may prefer to occupy the colchicine binding site. Further, CBIQD perturbed tubulin conformation to some extent and protected ∼1.4 cysteine residues toward chemical modification by 5,5'-dithiobis-2-nitrobenzoic acid. We also suggest the possible mechanism underlying CBIQD-induced cancer cell cytotoxicity: CBIQD, when bound to tubulin, may prevent it to maintain a straight conformation; consequently, the α- and ß-heterodimers might be no longer available for MT growth. Thus, the consolidated spectroscopic research described herein explores the potential of CBIQD as a new paradigm in the design and development of novel unfused or nonring-fused naphthalimide-based antimitotic cancer therapeutics in medicinal chemistry research.

19.
Tumour Biol ; 39(2): 1010428317694314, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28240052

ABSTRACT

Paclitaxel (Tx) is one of the first-line chemotherapeutic drugs used against lung cancer, but acquired resistance to this drug is a major challenge against successful chemotherapy. In this work, we have focused on the chronological changes of various cellular parameters and associated effect on Tx (10 nM) resistance development in A549 cell line. It was observed, at initial stage, the cell death percentage due to drug treatment had increased up to 20 days, and thereafter, it started declining and became completely resistant by 40 days. Expressions of ßIII tubulin and drug efflux pumps also increased over the period of resistance development. Changes in cellular autophagy and reactive oxygen species generation showed a biphasic pattern and increased gradually over the course of upto 20 days, thereafter declined gradually; however, their levels remained higher than untreated cells when resistance was acquired. Increase in extracellular acidification rates and oxygen consumption rates was found to be directly correlated with acquisition of resistance. The depolarisation of mitochondrial membrane potential was also biphasic; first, it increased with increase of cell death up to 20 days, thereafter, it gradually decreased to normal level along with resistance development. Increase in activity of catalase, glutathione peroxidase and glutathione content over these periods may attribute in bringing down the reactive oxygen species levels and normalisation of mitochondrial membrane potential in spite of comparatively higher reactive oxygen species production by the Tx-resistant cells.


Subject(s)
Adenocarcinoma/drug therapy , Adenocarcinoma/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Membrane Potential, Mitochondrial/physiology , Paclitaxel/pharmacology , Reactive Oxygen Species/metabolism , A549 Cells , Adenocarcinoma/pathology , Adenocarcinoma of Lung , Antineoplastic Agents, Phytogenic/pharmacology , Autophagy , Caspase 3/metabolism , Cell Cycle/physiology , Drug Resistance, Neoplasm , Energy Metabolism , Humans , Lung Neoplasms/pathology , Microscopy, Fluorescence
20.
Anticancer Agents Med Chem ; 17(3): 442-455, 2017.
Article in English | MEDLINE | ID: mdl-27338299

ABSTRACT

BACKGROUND AND OBJECTIVE: The clinical success of the chemotherapeutic drugs is restricted by the nonspecific toxicity-related adverse side effects. The diverse implication of indoles and thiazoles in medicinal chemistry prompted us to develop a new series of novel 2-aryl-amino-4-(3'-indolyl)thiazoles as more effective and less toxic anti-cancer compounds. METHOD AND RESULTS: One-pot microwave-assisted rapid and high yielding synthesis of 2-arylamino-4-(3'- indolyl)thiazoles involved the reaction of easily available α-tosyloxy-ketones with N-arylthioureas in polyethylene glycol-400 (PEG-400). In vitro cytotoxicity study of 2-arylamino-4-(3'-indolyl)thiazoles against a panel of human cancer cell lines by MTT assay revealed IC50 values in the low micromolar range. Of the fifteen synthesized arylaminothiazoles, compounds 17b, 17d, 17g and 17il showed significant anti-proliferative activity against the selected cancer cell lines with IC50 < 10 µM. The compound 17b was identified as the most potent ligand of the series, which exhibited good cytotoxic activity against MCF-7 breast cancer cells with an IC50 value of 1.86 µM but minimal toxicity on normal human cells. Investigation of the underlying mechanism by flow cytometry indicated that 17b induced ROS-mediated apoptosis in MCF-7 cells in a dose-dependent manner as supported by upregulation of Bax and caspase-3 and down-regulation of Bcl-2 (by Western blot). CONCLUSION: Developed an efficient and eco-friendly synthesis for 2-arylamino-4-(3'-indolyl)thiazoles, and their in vitro cytotoxicity studies demonstrate that compound 17b exhibits significant anti-proliferative activity against MCF-7 (breast cancer) cells by activating ROS-mediated apoptosis through the mitochondrial apoptosis pathway.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Microwaves , Thiazoles/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/chemistry , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...