Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-35198968

ABSTRACT

BACKGROUND: Gradual increase of multidrug resistant infections is a threat to the human race as MDR plasmids have acquired.>10 mdr and drug efflux genes to inactivate antibiotics. Plants secret anti-metabolites to retard growth of soil and water bacteria and are ideal source of antibiotics. PURPOSE: Purpose of the study is to discover an alternate phyto-drug from medicinal plants of India that selectively kills MDR bacteria. METHODS: MDR bacteria isolated from Ganga river water, milk, chicken meat and human hair for testing phyto-extracts. Eighty medicinal plants were searched and six phyto-extracts were selected having good antibacterial activities as demonstrated by agar-hole assays giving 15 â€‹mm or greater lysis zone. Phyto-extracts were made in ethanol or methanol (1:5 w/v) for overnight and were concentrated. Preparative TLC and HPLC were performed to purify phytochemical. MASS, NMR, FTIR methods were used for chemical analysis of CU1. In vitro RNA polymerase and DNA polymerase assays were performed for target identification. RESULTS: CU1 belongs to a saponin bromo-polyphenol compound with a large structure that purified on HPLC C18 column at 3min. CU1 is bacteriocidal but three times less active than rifampicin in Agar-hole assay. While in LB medium it shows greater than fifteen times poor inhibitor due to solubility problem. CU1 inhibited transcription from Escherichia coli as well as Mycobacterium tuberculosis RNA Polymerases. Gel shift assays demonstrated that CU1 interferes at the open promoter complex formation step. On the other hand CU1 did not inhibit DNA polymerase. CONCLUSION: Phyto-chemicals from Cassia fistula bark are abundant, less toxic, target specific and may be a safer low cost drug against MDR bacterial diseases.

2.
Environ Sci Pollut Res Int ; 28(30): 41095-41108, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33774797

ABSTRACT

The non-invasive treatment strategy is indispensable to overcome the side effects of conventional treatment with chelating agents against arsenic. Presence of catechins and flavonoids in Camellia sinensis have potential antioxidant properties and other beneficial effects. The aim of the study was to explore the curative potential role of Camellia sinensis against uterine damages produced by sodium arsenite in mature albino rats. A dose of 10 mg of Camellia sinensis ethyl acetate (CS-EA) fraction/100 gm body weight was provided to the sodium arsenite-treated rats (10 mg/Kg body weight). LC-MS analysis was used for the detection of active component in CS-EA fraction. Enzymatic antioxidants analysis carried out by reproducible native gel technique. Hormones and some pro and anti-inflammatory markers were detected by ELISA, PCR, and western blot techniques respectively. Immunostaining was performed for the detection of estradiol receptor alpha. LC-MS analysis of CS-EA fraction ensured the presence of active tea polyphenol and tea catechin of which highest peak of epigallocatechin-3 gallate (EGCG) was obtained in this study. Significant elevations of lipid peroxidation end products followed by the diminution of antioxidant enzymes activities were noted in arsenicated rats which were capably retrieved by the treatment of CS-EA fraction. Post-treatment with CS-EA fraction meaningfully improved gonadotrophins and estradiol signalling in association with a highly expressing estradiol receptor-α (ERα) in the ovary and uterus followed by the maintenance of normal utero-ovarian histoarchitecture in arsenic fed rats. CS-EA fractioned treated group overturned the sodium arsenite driven higher expression of pro-inflammatory cytokines and proapoptotic markers along with a low level of anti apoptotic Bcl-2 expression and comparatively lower NF-κB signalling in the uterus via regulating IKK ß kinase mostly by EGCG of CS-EA fraction. However, ethyl acetate fraction of Camellia sinensis played a critical role in minimizing arsenic-mediated uterine hypo-function.


Subject(s)
Arsenic , Camellia sinensis , Acetates , Animals , Antioxidants , Arsenic/analysis , Female , NF-kappa B/genetics , Oxidative Stress , Rats , Rats, Wistar , Tea , Uterus , bcl-2-Associated X Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...