Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Comput Chem ; 44(25): 1998-2015, 2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37526138

ABSTRACT

The numerical ill-conditioning associated with approximating an electron density with a convex sum of Gaussian or Slater-type functions is overcome by using the (extended) Kullback-Leibler divergence to measure the deviation between the target and approximate density. The optimized densities are non-negative and normalized, and they are accurate enough to be used in applications related to molecular similarity, the topology of the electron density, and numerical molecular integration. This robust, efficient, and general approach can be used to fit any non-negative normalized functions (e.g., the kinetic energy density and molecular electron density) to a convex sum of non-negative basis functions. We present a fixed-point iteration method for optimizing the Kullback-Leibler divergence and compare it to conventional gradient-based optimization methods. These algorithms are released through the free and open-source BFit package, which also includes a L2-norm squared optimization routine applicable to any square-integrable scalar function.

2.
J Chem Theory Comput ; 8(11): 4081-93, 2012 Nov 13.
Article in English | MEDLINE | ID: mdl-26605575

ABSTRACT

Nonlocal exchange-correlation energy functionals are constructed using the accurate model exchange-correlation hole for the uniform electron gas developed by Gori-Giorgi and Perdew. The exchange-correlation hole is constrained to be symmetric and normalized, so the resulting functionals can be viewed as symmetrized versions of the weighted density approximation; we call them two-point weighted density approximations. Even without optimization of parameters or functional forms, the exchange-correlation energies for small molecules are competitive with those of the best generalized gradient approximation functionals. Two-point weighted density approximations seem to be an interesting new direction for functional development. A more general version of the conditions that define the energy for fractional electron number and fractional spin are presented. These "generalized flat-planes" conditions are closely linked to the normalization of the spin-resolved exchange-correlation hole at noninteger electron number. This and many other properties of the exact exchange-correlation functional can be imposed straightforwardly and directly in symmetrized weighted density approximation.

3.
J Chem Phys ; 130(24): 244105, 2009 Jun 28.
Article in English | MEDLINE | ID: mdl-19566140

ABSTRACT

Relationships between third-order reactivity indicators in the closed system [N, v(r)], open system [mu, v(r)], and density [rho(r)] pictures are derived. Our method of derivation unifies and extends known results. Among the relationships is a link between the third-order response of the energy to changes in the density and the quadratic response of the density to changes in external potential. This provides a link between hyperpolarizability and the system's sensitivity to changes in electron density. The dual descriptor is a unifying feature of many of the formulas we derive.

SELECTION OF CITATIONS
SEARCH DETAIL
...