Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 619(7969): 385-393, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37407816

ABSTRACT

The basic helix-loop-helix (bHLH) family of transcription factors recognizes DNA motifs known as E-boxes (CANNTG) and includes 108 members1. Here we investigate how chromatinized E-boxes are engaged by two structurally diverse bHLH proteins: the proto-oncogene MYC-MAX and the circadian transcription factor CLOCK-BMAL1 (refs. 2,3). Both transcription factors bind to E-boxes preferentially near the nucleosomal entry-exit sites. Structural studies with engineered or native nucleosome sequences show that MYC-MAX or CLOCK-BMAL1 triggers the release of DNA from histones to gain access. Atop the H2A-H2B acidic patch4, the CLOCK-BMAL1 Per-Arnt-Sim (PAS) dimerization domains engage the histone octamer disc. Binding of tandem E-boxes5-7 at endogenous DNA sequences occurs through direct interactions between two CLOCK-BMAL1 protomers and histones and is important for circadian cycling. At internal E-boxes, the MYC-MAX leucine zipper can also interact with histones H2B and H3, and its binding is indirectly enhanced by OCT4 elsewhere on the nucleosome. The nucleosomal E-box position and the type of bHLH dimerization domain jointly determine the histone contact, the affinity and the degree of competition and cooperativity with other nucleosome-bound factors.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , DNA , Histones , ARNTL Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , DNA/genetics , DNA/metabolism , Helix-Loop-Helix Motifs/genetics , Histones/chemistry , Histones/metabolism , Nucleosomes/chemistry , Nucleosomes/genetics , Nucleosomes/metabolism , Protein Binding , CLOCK Proteins/chemistry , CLOCK Proteins/metabolism , Proto-Oncogene Proteins c-myc/chemistry , Proto-Oncogene Proteins c-myc/metabolism , Allosteric Regulation , Leucine Zippers , Octamer Transcription Factor-3/metabolism , Protein Multimerization
SELECTION OF CITATIONS
SEARCH DETAIL
...