Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Cell Death Dis ; 14(7): 420, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37443173

ABSTRACT

Retinitis pigmentosa (RP) defines a group of hereditary progressive rod-cone degenerations that exhibit a common phenotype caused by variants in over 70 genes. While most variants in the dehydrodolichyl diphosphate synthase (DHDDS) gene result in syndromic abnormalities, some variants cause non-syndromic RP (RP59). DHDDS encodes one subunit of the enzyme cis-prenyltransferase (CPT), which is required for the synthesis of dolichol (Dol), that is a necessary protein glycosylation cofactor. We previously reported the creation and initial characterization of a knock-in (KI) mouse model harboring the most prevalent RP59-associated DHDDS variant (K42E) to understand how defects in DHDDS lead to retina-specific pathology. This model exhibited no profound retinal degeneration, nor protein N-glycosylation defects. Here, we report that the Dol isoprenylogue species in retina, liver, and brain of the K42E mouse model are statistically shorter than in the corresponding tissues of age-matched controls, as reported in blood and urine of RP59 patients. Retinal transcriptome analysis demonstrated elevation of many genes encoding proteins involved in synaptogenesis and synaptic function. Quantitative retinal cell layer thickness measurements demonstrated a significant reduction in the inner nuclear layer (INL) and total retinal thickness (TRT) beginning at postnatal (PN) ∼2 months, progressively increasing to PN 18-mo. Histological analysis revealed cell loss in the INL, outer plexiform layer (OPL) disruption, and ectopic localization of outer nuclear layer (ONL) nuclei into the OPL of K42E mutant retinas, relative to controls. Electroretinograms (ERGs) of mutant mice exhibited reduced b-wave amplitudes beginning at PN 1-mo, progressively declining through PN 18-mo, without appreciable a-wave attenuation, relative to controls. Our results suggest that the underlying cause of DHDDS K42E variant driven RP59 retinal pathology is defective synaptic transmission from outer to inner retina.


Subject(s)
Retinal Degeneration , Retinitis Pigmentosa , Animals , Mice , Retina/metabolism , Retinal Degeneration/metabolism , Retinitis Pigmentosa/metabolism , Electroretinography , Synaptic Transmission
2.
J Clin Med ; 12(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36902558

ABSTRACT

Intestinal lymphatic, known as lacteal, plays a critical role in maintaining intestinal homeostasis by regulating several key functions, including the absorption of dietary lipids, immune cell trafficking, and interstitial fluid balance in the gut. The absorption of dietary lipids relies on lacteal integrity, mediated by button-like and zipper-like junctions. Although the intestinal lymphatic system is well studied in many diseases, including obesity, the contribution of lacteals to the gut-retinal axis in type 1 diabetes (T1D) has not been examined. Previously, we showed that diabetes induces a reduction in intestinal angiotensin-converting enzyme 2 (ACE2), leading to gut barrier disruption. However, when ACE2 levels are maintained, a preservation of gut barrier integrity occurs, resulting in less systemic inflammation and a reduction in endothelial cell permeability, ultimately retarding the development of diabetic complications, such as diabetic retinopathy. Here, we examined the impact of T1D on intestinal lymphatics and circulating lipids and tested the impact of intervention with ACE-2-expressing probiotics on key aspects of gut and retinal function. Akita mice with 6 months of diabetes were orally gavaged LP-ACE2 (3x/week for 3 months), an engineered probiotic (Lactobacillus paracasei; LP) expressing human ACE2. After three months, immunohistochemistry (IHC) was used to evaluate intestinal lymphatics, gut epithelial, and endothelial barrier integrity. Retinal function was assessed using visual acuity, electroretinograms, and enumeration of acellular capillaries. LP-ACE2 significantly restored intestinal lacteal integrity as assessed by the increased expression of lymphatic vessel hyaluronan receptor 1 (LYVE-1) expression in LP-ACE2-treated Akita mice. This was accompanied by improved gut epithelial (Zonula occludens-1 (ZO-1), p120-catenin) and endothelial (plasmalemma vesicular protein -1 (PLVAP1)) barrier integrity. In Akita mice, the LP-ACE2 treatment reduced plasma levels of LDL cholesterol and increased the expression of ATP-binding cassette subfamily G member 1 (ABCG1) in retinal pigment epithelial cells (RPE), the population of cells responsible for lipid transport from the systemic circulation into the retina. LP-ACE2 also corrected blood-retinal barrier (BRB) dysfunction in the neural retina, as observed by increased ZO-1 and decreased VCAM-1 expression compared to untreated mice. LP-ACE2-treated Akita mice exhibit significantly decreased numbers of acellular capillaries in the retina. Our study supports the beneficial role of LP-ACE2 in the restoration of intestinal lacteal integrity, which plays a key role in gut barrier integrity and systemic lipid metabolism and decreased diabetic retinopathy severity.

3.
Trop Anim Health Prod ; 55(1): 45, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36692602

ABSTRACT

This paper examined the pluripotent effect of supplementation of turmeric rhizome powder (TRP) (Curcuma longa) in growing Andaman local pigs. A total of 48 pigs were randomly allotted into four groups and fed diets containing TRP at 4 concentrations, that is, 0 (control group), 0.05 (treatment 1), 0.1 (treatment 2), and 0.2% (treatment 3) for 30 days. The mean body weight of pigs supplemented with 0.1% and 0.2% TRP was significantly higher than that of the control group (41.66 ± 0.44, 42.59 ± 0.33 vs 40.38 ± 0.30 kg; p ≤ 0.05) which indicated the effect of TRP as growth enhancer. A significant (p ≤ 0.05) decrease in serum concentration of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) was recorded in supplemented groups as compared to the control group. Creatinine kinase (U/l) decreased in all the treatment groups as compared to the control group. Total cholesterol, triglyceride, and low-density lipoprotein cholesterol decreased significantly after supplementation with 0.1% and 0.2% TRP in comparison to the control group. However, there was marked increase in high-density lipoprotein cholesterol (mg/dl) in all TRP-supplemented groups than the control group (27.67 ± 0.60 in T1, 32.76 ± 0.32 in T2, and 34.58 ± 0.37 in T3 vs. 23.73 ± 0.69 in control; p ≤ 0.05). Further, there was increase in antioxidant profile after TRP supplementation. Anti-inflammatory potentiality of TRP could also be appreciated since TRP supplementation downregulated (p ≤ 0.05) expression of IL-6, IL-1ß, and IFN-γ. Therefore, we perceive that this conflated approach is an example of its own kind to focus on modification of health status of pigs for more productivity and augmentation of immune response.


Subject(s)
Curcuma , Rhizome , Animals , Swine , Powders , Dietary Supplements , Cholesterol
4.
Circ Res ; 132(1): e1-e21, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36448480

ABSTRACT

BACKGROUND: We examined components of systemic and intestinal renin-angiotensin system on gut barrier permeability, glucose homeostasis, systemic inflammation, and progression of diabetic retinopathy (DR) in human subjects and mice with type 1 diabetes (T1D). METHODS: T1D individual with (n=18) and without (n=20) DR and controls (n=34) were examined for changes in gut-regulated components of the immune system, gut leakage markers (FABP2 [fatty acid binding protein 2] and peptidoglycan), and Ang II (angiotensin II); Akita mice were orally administered a Lactobacillus paracasei (LP) probiotic expressing humanized ACE2 (angiotensin-converting enzyme 2) protein (LP-ACE2) as either a prevention or an intervention. Akita mice with genetic overexpression of humanAce2 by small intestine epithelial cells (Vil-Cre.hAce2KI-Akita) were similarly examined. After 9 months of T1D, circulatory, enteral, and ocular end points were assessed. RESULTS: T1D subjects exhibit elevations in gut-derived circulating immune cells (ILC1 cells) and higher gut leakage markers, which were positively correlated with plasma Ang II and DR severity. The LP-ACE2 prevention cohort and genetic overexpression of intestinal ACE2 preserved barrier integrity, reduced inflammatory response, improved hyperglycemia, and delayed development of DR. Improvements in glucose homeostasis were due to intestinal MasR activation, resulting in a GSK-3ß (glycogen synthase kinase-3 beta)/c-Myc (cellular myelocytomatosis oncogene)-mediated decrease in intestinal glucose transporter expression. In the LP-ACE2 intervention cohort, gut barrier integrity was improved and DR reversed, but no improvement in hyperglycemia was observed. These data support that the beneficial effects of LP-ACE2 on DR are due to the action of ACE2, not improved glucose homeostasis. CONCLUSIONS: Dysregulated systemic and intestinal renin-angiotensin system was associated with worsening gut barrier permeability, gut-derived immune cell activation, systemic inflammation, and progression of DR in human subjects. In Akita mice, maintaining intestinal ACE2 expression prevented and reversed DR, emphasizing the multifaceted role of the intestinal renin-angiotensin system in diabetes and DR.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetic Retinopathy , Hyperglycemia , Animals , Humans , Mice , Angiotensin-Converting Enzyme 2/metabolism , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/metabolism , Diabetic Retinopathy/prevention & control , Glucose/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Hyperglycemia/complications , Inflammation/metabolism , Intestine, Small , Peptide Fragments/metabolism , Peptidyl-Dipeptidase A/genetics , Renin-Angiotensin System/physiology
5.
Front Genet ; 13: 774113, 2022.
Article in English | MEDLINE | ID: mdl-35719396

ABSTRACT

Conventional animal selection and breeding methods were based on the phenotypic performance of the animals. These methods have limitations, particularly for sex-limited traits and traits expressed later in the life cycle (e.g., carcass traits). Consequently, the genetic gain has been slow with high generation intervals. With the advent of high-throughput omics techniques and the availability of multi-omics technologies and sophisticated analytic packages, several promising tools and methods have been developed to estimate the actual genetic potential of the animals. It has now become possible to collect and access large and complex datasets comprising different genomics, transcriptomics, proteomics, metabolomics, and phonemics data as well as animal-level data (such as longevity, behavior, adaptation, etc.,), which provides new opportunities to better understand the mechanisms regulating animals' actual performance. The cost of omics technology and expertise of several fields like biology, bioinformatics, statistics, and computational biology make these technology impediments to its use in some cases. The population size and accurate phenotypic data recordings are other significant constraints for appropriate selection and breeding strategies. Nevertheless, omics technologies can estimate more accurate breeding values (BVs) and increase the genetic gain by assisting the section of genetically superior, disease-free animals at an early stage of life for enhancing animal productivity and profitability. This manuscript provides an overview of various omics technologies and their limitations for animal genetic selection and breeding decisions.

6.
Sci Adv ; 8(9): eabm5559, 2022 03 04.
Article in English | MEDLINE | ID: mdl-35245116

ABSTRACT

Human induced pluripotent stem cells (hiPSCs) were differentiated into a specific mesoderm subset characterized by KDR+CD56+APLNR+ (KNA+) expression. KNA+ cells had high clonal proliferative potential and specification into endothelial colony-forming cell (ECFCs) phenotype. KNA+ cells differentiated into perfused blood vessels when implanted subcutaneously into the flank of nonobese diabetic/severe combined immunodeficient mice and when injected into the vitreous of type 2 diabetic mice (db/db mice). Transcriptomic analysis showed that differentiation of hiPSCs derived from diabetics into KNA+ cells was sufficient to change baseline differences in gene expression caused by the diabetic status and reprogram diabetic cells to a pattern similar to KNA+ cells derived from nondiabetic hiPSCs. Proteomic array studies performed on retinas of db/db mice injected with either control or diabetic donor-derived KNA+ cells showed correction of aberrant signaling in db/db retinas toward normal healthy retina. These data provide "proof of principle" that KNA+ cells restore perfusion and correct vascular dysfunction in db/db mice.

7.
Invest Ophthalmol Vis Sci ; 63(1): 5, 2022 01 03.
Article in English | MEDLINE | ID: mdl-34985498

ABSTRACT

Purpose: The gut microbiome has been linked to disease pathogenesis through their interaction in metabolic, endocrine, and immune functions. The goal of this study was to determine whether the gut and plasma microbiota could transfer microbes to the retina in type 1 diabetic mice with retinopathy. Methods: We analyzed the fecal, plasma, whole globe, and retina microbiome in Akita mice and compared with age-matched wild-type (WT) mice using 16S rRNA sequencing and metatranscriptomic analysis. To eliminate the contribution of the ocular surface and plasma microbiome, mice were perfused with sterile saline solution, the whole globes were extracted, and the neural retina was removed under sterile conditions for retinal microbiome. Results: Our microbiome analysis revealed that Akita mice demonstrated a distinct pattern of microbes within each source: feces, plasma, whole globes, and retina. WT mice and Akita mice experienced transient bacteremia in the plasma and retina. Bacteria were identified in the retina of the Akita mice, specifically Corynebacterium, Pseudomonas, Lactobacillus, Staphylococcus, Enterococcus, and Bacillus. Significantly increased levels of peptidoglycan (0.036 ± 0.001 vs. 0.023 ± 0.002; P < 0.002) and TLR2 (3.47 ± 0.15 vs. 1.99 ± 0.07; P < 0.0001) were observed in the retina of Akita mice compared to WT. Increased IBA+ cells in the retina, reduced a- and b-waves on electroretinography, and increased acellular capillary formation demonstrated the presence of retinopathy in the Akita cohort compared to WT mice. Conclusions: Together, our findings suggest that transient bacteremia exists in the plasma and retina of both cohorts. The bacteria found in Akita mice are distinct from WT mice and may contribute to development of retinal inflammation and barrier dysfunction in retinopathy.


Subject(s)
Bacteremia/microbiology , Bacteria/isolation & purification , Diabetic Retinopathy/microbiology , Feces/microbiology , Retina/microbiology , Animals , Bacteria/genetics , Diabetes Mellitus, Type 1/microbiology , Disease Models, Animal , Electroretinography , Enzyme-Linked Immunosorbent Assay , Eye/microbiology , Gastrointestinal Microbiome/physiology , Male , Mice , Mice, Inbred C57BL , Microbiota/physiology , RNA, Ribosomal, 16S/genetics
8.
J Biol Chem ; 297(4): 101185, 2021 10.
Article in English | MEDLINE | ID: mdl-34509473

ABSTRACT

Very low-density lipoprotein receptor (VLDLR) is a multifunctional transmembrane protein. Beyond the function of the full-length VLDLR in lipid transport, the soluble ectodomain of VLDLR (sVLDLR) confers anti-inflammatory and antiangiogenic roles in ocular tissues through inhibition of canonical Wnt signaling. However, it remains unknown how sVLDLR is shed into the extracellular space. In this study, we present the first evidence that a disintegrin and metalloprotease 17 (ADAM17) is responsible for sVLDLR shedding in human retinal pigment epithelium cells using pharmacological and genetic approaches. Among selected proteinase inhibitors, an ADAM17 inhibitor demonstrated the most potent inhibitory effect on sVLDLR shedding. siRNA-mediated knockdown or CRISPR/Cas9-mediated KO of ADAM17 diminished, whereas plasmid-mediated overexpression of ADAM17 promoted sVLDLR shedding. The amount of shed sVLDLR correlated with an inhibitory effect on the Wnt signaling pathway. Consistent with these in vitro findings, intravitreal injection of an ADAM17 inhibitor reduced sVLDLR levels in the extracellular matrix in the mouse retina. In addition, our results demonstrated that ADAM17 cleaved VLDLR only in cells coexpressing these proteins, suggesting that shedding occurs in a cis manner. Moreover, our study demonstrated that aberrant activation of Wnt signaling was associated with decreased sVLDLR levels, along with downregulation of ADAM17 in ocular tissues of an age-related macular degeneration model. Taken together, our observations reveal the mechanism underlying VLDLR cleavage and identify a potential therapeutic target for the treatment of disorders associated with dysregulation of Wnt signaling.


Subject(s)
ADAM17 Protein/metabolism , Macular Degeneration/metabolism , Receptors, LDL/metabolism , Retinal Pigment Epithelium/metabolism , Wnt Signaling Pathway , ADAM17 Protein/antagonists & inhibitors , ADAM17 Protein/genetics , Animals , Disease Models, Animal , Humans , Macular Degeneration/genetics , Mice , Mice, Knockout , Protein Domains , Receptors, LDL/genetics
9.
Diabetologia ; 64(7): 1674-1689, 2021 07.
Article in English | MEDLINE | ID: mdl-33770194

ABSTRACT

AIMS/HYPOTHESIS: Homo sapiens evolved under conditions of intermittent food availability and prolonged fasting between meals. Periods of fasting are important for recovery from meal-induced oxidative and metabolic stress, and tissue repair. Constant high energy-density food availability in present-day society contributes to the pathogenesis of chronic diseases, including diabetes and its complications, with intermittent fasting (IF) and energy restriction shown to improve metabolic health. We have previously demonstrated that IF prevents the development of diabetic retinopathy in a mouse model of type 2 diabetes (db/db); however the mechanisms of fasting-induced health benefits and fasting-induced risks for individuals with diabetes remain largely unknown. Sirtuin 1 (SIRT1), a nutrient-sensing deacetylase, is downregulated in diabetes. In this study, the effect of SIRT1 stimulation by IF, fasting-mimicking cell culture conditions (FMC) or pharmacological treatment using SRT1720 was evaluated on systemic and retinal metabolism, systemic and retinal inflammation and vascular and bone marrow damage. METHODS: The effects of IF were modelled in vivo using db/db mice and in vitro using bovine retinal endothelial cells or rat retinal neuroglial/precursor R28 cell line serum starved for 24 h. mRNA expression was analysed by quantitative PCR (qPCR). SIRT1 activity was measured via histone deacetylase activity assay. NR1H3 (also known as liver X receptor alpha [LXRα]) acetylation was measured via western blot analysis. RESULTS: IF increased Sirt1 mRNA expression in mouse liver and retina when compared with non-fasted animals. IF also increased SIRT1 activity eightfold in mouse retina while FMC increased SIRT1 activity and expression in retinal endothelial cells when compared with control. Sirt1 expression was also increased twofold in neuronal retina progenitor cells (R28) after FMC treatment. Moreover, FMC led to SIRT1-mediated LXRα deacetylation and subsequent 2.4-fold increase in activity, as measured by increased mRNA expression of the genes encoding ATP-binding cassette transporter (Abca1 and Abcg1). These changes were reduced when retinal endothelial cells expressing a constitutively acetylated LXRα mutant were tested. Increased SIRT1/LXR/ABC-mediated cholesterol export resulted in decreased retinal endothelial cell cholesterol levels. Direct activation of SIRT1 by SRT1720 in db/db mice led to a twofold reduction of diabetes-induced inflammation in the retina and improved diabetes-induced visual function impairment, as measured by electroretinogram and optokinetic response. In the bone marrow, there was prevention of diabetes-induced myeloidosis and decreased inflammatory cytokine expression. CONCLUSIONS/INTERPRETATION: Taken together, activation of SIRT1 signalling by IF or through pharmacological activation represents an effective therapeutic strategy that provides a mechanistic link between the advantageous effects associated with fasting regimens and prevention of microvascular and bone marrow dysfunction in diabetes.


Subject(s)
Diabetic Angiopathies/prevention & control , Fasting/physiology , Heterocyclic Compounds, 4 or More Rings/pharmacology , Animals , Cattle , Cell Death/drug effects , Cell Death/genetics , Cells, Cultured , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/physiopathology , Diabetes Mellitus, Experimental/therapy , Diabetic Angiopathies/genetics , Diabetic Angiopathies/metabolism , Gene Expression/drug effects , Heterocyclic Compounds, 4 or More Rings/therapeutic use , Hypoglycemic Agents/pharmacology , Liver X Receptors/genetics , Liver X Receptors/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Rats , Retina/drug effects , Retina/pathology , Retinal Neurons/drug effects , Retinal Neurons/metabolism , Retinal Neurons/pathology , Retinal Vessels/drug effects , Retinal Vessels/metabolism , Retinal Vessels/pathology , Signal Transduction/drug effects , Signal Transduction/genetics , Sirtuin 1/drug effects , Sirtuin 1/genetics , Sirtuin 1/metabolism
10.
Trop Anim Health Prod ; 53(1): 190, 2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33660098

ABSTRACT

The present study aimed to estimate the genetic parameters of different fibre traits, viz., greasy fleece weight, staple length, and fibre diameter in Rambouillet sheep population using a multi-trait animal model. Data, spanning over 10 years (1998-2007) and pertaining to fibre traits at first clip, were collected for a total of 4186 Rambouillet sheep maintained at an organized farm. (Co)Variance structure and genetic parameters were estimated using a multi-trait animal model. The genetic analysis of data was performed based on restricted maximum likelihood (REML) procedure using WOMBAT software. The model incorporated sex of lamb (i = 1, 2), year of birth (j = 1-10), season of birth (k = 1-2), and litter size (l = 1-2) as fixed effects while direct additive genetic and maternal genetic effects were included as random effects. The direct additive genetic heritability estimates were 0.120±0.034, 0.136±0.037, and 0.356±0.070 for greasy fleece weight, staple length, and fibre diameter, respectively. The maternal genetic heritability of all fibre traits under study was very low. Additive genetic correlation was positive and low between greasy fleece weight and staple length; and between staple length and fibre diameter. In conclusion, fibre diameter was moderately heritable which implies that selection may lead to moderate improvement in this trait. The results from the present study will help in formulating optimal breeding plans for improvement of fibre traits in Rambouillet sheep.


Subject(s)
Sheep, Domestic , Wool , Animals , Birth Weight , Body Weight , Female , Litter Size/genetics , Phenotype , Pregnancy , Sheep/genetics , Sheep, Domestic/genetics
11.
Cells ; 9(2)2020 02 18.
Article in English | MEDLINE | ID: mdl-32085589

ABSTRACT

We sought to delineate the retinal features associated with the high-fat diet (HFD) mouse, a widely used model of obesity. C57BL/6 mice were fed either a high-fat (60% fat; HFD) or low-fat (10% fat; LFD) diet for up to 12 months. The effect of HFD on body weight and insulin resistance were measured. The retina was assessed by electroretinogram (ERG), fundus photography, permeability studies, and trypsin digests for enumeration of acellular capillaries. The HFD cohort experienced hypercholesterolemia when compared to the LFD cohort, but not hyperglycemia. HFD mice developed a higher body weight (60.33 g vs. 30.17g, p < 0.0001) as well as a reduced insulin sensitivity index (9.418 vs. 62.01, p = 0.0002) compared to LFD controls. At 6 months, retinal functional testing demonstrated a reduction in a-wave and b-wave amplitudes. At 12 months, mice on HFD showed evidence of increased retinal nerve infarcts and vascular leakage, reduced vascular density, but no increase in number of acellular capillaries compared to LFD mice. In conclusion, the HFD mouse is a useful model for examining the effect of prediabetes and hypercholesterolemia on the retina. The HFD-induced changes appear to occur slower than those observed in type 2 diabetes (T2D) models but are consistent with other retinopathy models, showing neural damage prior to vascular changes.


Subject(s)
Diabetic Retinopathy/physiopathology , Diet, High-Fat , Diet, Western , Disease Models, Animal , Phenotype , Prediabetic State/physiopathology , Retina/physiopathology , Animals , Body Weight , Diabetes Mellitus, Type 2/physiopathology , Diet, Fat-Restricted , Electroretinography , Insulin Resistance , Mice , Mice, Inbred C57BL , Obesity/physiopathology
12.
FASEB J ; 34(1): 1211-1230, 2020 01.
Article in English | MEDLINE | ID: mdl-31914632

ABSTRACT

Mutations in peripherin 2 (PRPH2) have been associated with retinitis pigmentosa (RP) and macular/pattern dystrophies, but the origin of this phenotypic variability is unclear. The majority of Prph2 mutations are located in the large intradiscal loop (D2), a region that contains seven cysteines involved in intra- and intermolecular disulfide bonding and protein folding. A mutation at cysteine 213, which is engaged in an intramolecular disulfide bond, leads to butterfly-shaped pattern dystrophy in humans, in sharp contrast to mutations in the adjacent cysteine at position 214 which result in RP. To help understand this unexpected phenotypic variability, we generated a knockin mouse line carrying the C213Y disease mutation. The mutant Prph2 protein lost the ability to oligomerize with rod outer segment membrane protein 1 (Rom1), but retained the ability to form homotetramers. C213Y heterozygotes had significantly decreased overall Prph2 levels as well as decreased rod and cone function. Critically, supplementation with extra wild-type Prph2 protein elicited improvements in Prph2 protein levels and rod outer segment structure, but not functional rescue in rods or cones. These findings suggest that not all interruptions of D2 loop intramolecular disulfide bonding lead to haploinsufficiency-related RP, but rather that more subtle changes can lead to mutant proteins stable enough to exert gain-of-function defects in rods and cones. This outcome highlights the difficulty in targeting Prph2-associated gain-of-function disease and suggests that elimination of the mutant protein will be a pre-requisite for any curative therapeutic strategy.


Subject(s)
Macular Degeneration , Mutation, Missense , Peripherins , Retinal Cone Photoreceptor Cells , Retinal Rod Photoreceptor Cells , Retinitis Pigmentosa , Amino Acid Substitution , Animals , Eye Proteins/genetics , Eye Proteins/metabolism , Humans , Macular Degeneration/genetics , Macular Degeneration/metabolism , Macular Degeneration/pathology , Mice , Mice, Transgenic , Peripherins/genetics , Peripherins/metabolism , Protein Multimerization , Retinal Cone Photoreceptor Cells/metabolism , Retinal Cone Photoreceptor Cells/pathology , Retinal Rod Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/pathology , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/metabolism , Retinitis Pigmentosa/pathology , Tetraspanins/genetics , Tetraspanins/metabolism
13.
J Therm Biol ; 82: 99-106, 2019 May.
Article in English | MEDLINE | ID: mdl-31128665

ABSTRACT

The temperature-humidity index (THI) has been extensively applied for assessing heat stress in moderate to hot conditions in dairy cattle. However, there exist wide variation between researchers in defining an appropriate range of THI values for denoting different levels of stress. The present study was aimed to reassess previously described heat stress indicators of dairy cattle of sub-tropical region of India. From comparative evaluation of meteorological data over previous four years (2014-2017) the period of year when high THI prevailed in the region was determined. Accordingly, the time period of sample collection and observation on animals was decided, so that a THI range of 68-86 could be covered. After analyzing physiological, biochemical parameters and expression profile of heat shock response (HSR) genes of animals in response to different THI, it was evident from the study that animal undergoes few or little changes at THI 72, but major physiological changes occurred after THI reached 74. At THI range 74-79, no drastic change in these parameters occurred suggesting animals undergo transient acclimatization in this range to maintain homeostasis. Once THI reached and crossed 80, this homeostasis was perturbed and animals experienced major physiological changes again. Overall, the study suggests that THI values indicating level of heat stress are dependent on the geographic location, as well as type of animal and therefore, existing THI should be recalibrated for different climatic region for accurate assessment of the heat stress.


Subject(s)
Cattle/physiology , Heat-Shock Response , Acclimatization , Animals , Cattle/genetics , Female , Heat Stress Disorders/veterinary , Hot Temperature , Humidity , Hybridization, Genetic , India , Temperature , Tropical Climate
14.
Am J Pathol ; 189(2): 405-425, 2019 02.
Article in English | MEDLINE | ID: mdl-30448403

ABSTRACT

CYP46A1 is the cytochrome P450 enzyme that converts cholesterol to 24-hydroxycholesterol, a cholesterol elimination product and a potent liver X receptor (LXR) ligand. We conducted retinal characterizations of Cyp46a1-/- mice that had normal fasting blood glucose levels but up to a 1.8-fold increase in retinal cholesterol. The retina of Cyp46a1-/- mice exhibited venous beading and tortuosity, microglia/macrophage activation, and increased vascular permeability, features commonly associated with diabetic retinopathy. The expression of Lxrα and Lxrß was increased in both the whole Cyp46a1-/- retina and retinal macroglia/macrophages. The LXR-target genes were affected as well, primarily in activated microglial cells and macrophages. In the latter, the LXR-transactivated genes (Abca1, Abcg1, Apod, Apoe, Mylip, and Arg2) were up-regulated; similarly, there was an up-regulation of the LXR-transrepressed genes (Ccl2, Ptgs2, Cxcl1, Il1b, Il6, Nos2, and Tnfa). For comparison, gene expression was investigated in bone marrow-derived macrophages from Cyp46a1-/- mice as well as retinal and bone marrow-derived macrophages from Cyp27a1-/- and Cyp27a1-/-Cyp46a1-/- mice. CYP46A1 expression was detected in retinal endothelial cells, and this expression was increased in the proinflammatory environment. Retinal Cyp46a1-/- phosphoproteome revealed altered phosphorylation of 30 different proteins, including tight junction protein zonula occludens 1 and aquaporin 4. Collectively, the data obtained establish metabolic and regulatory significance of CYP46A1 for the retina and suggest pharmacologic activation of CYP46A1 as a potential therapeutic approach to dyslipidemia-induced retinal damage.


Subject(s)
Cholesterol 24-Hydroxylase/deficiency , Cholesterol/metabolism , Diabetes Mellitus, Experimental , Diabetic Retinopathy , Eye Proteins , Microglia , Retina , Retinal Vessels , Animals , Cholesterol/genetics , Diabetes Mellitus, Experimental/enzymology , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/pathology , Diabetic Retinopathy/enzymology , Diabetic Retinopathy/genetics , Diabetic Retinopathy/pathology , Eye Proteins/genetics , Eye Proteins/metabolism , Gene Expression Regulation , Liver X Receptors/genetics , Liver X Receptors/metabolism , Mice , Mice, Knockout , Microglia/enzymology , Microglia/pathology , Retina/enzymology , Retina/pathology , Retinal Vessels/abnormalities , Retinal Vessels/metabolism
15.
Hum Gene Ther ; 30(5): 571-589, 2019 05.
Article in English | MEDLINE | ID: mdl-30358434

ABSTRACT

Mutations in GUCY2D, the gene encoding retinal guanylate cyclase-1 (retGC1), are the leading cause of autosomal dominant cone-rod dystrophy (CORD6). Significant progress toward clinical application of gene replacement therapy for Leber congenital amaurosis (LCA) due to recessive mutations in GUCY2D (LCA1) has been made, but a different approach is needed to treat CORD6 where gain of function mutations cause dysfunction and dystrophy. The CRISPR/Cas9 gene editing system efficiently disrupts genes at desired loci, enabling complete gene knockout or homology directed repair. Here, adeno-associated virus (AAV)-delivered CRISPR/Cas9 was used specifically to edit/disrupt this gene's early coding sequence in mouse and macaque photoreceptors in vivo, thereby knocking out retGC1 expression and demonstrably altering retinal function and structure. Neither preexisting nor induced Cas9-specific T-cell responses resulted in ocular inflammation in macaques, nor did it limit GUCY2D editing. The results show, for the first time, the ability to perform somatic gene editing in primates using AAV-CRISPR/Cas9 and demonstrate the viability this approach for treating inherited retinal diseases in general and CORD6 in particular.


Subject(s)
CRISPR-Cas Systems , Dependovirus/genetics , Gene Editing , Guanylate Cyclase/genetics , Receptors, Cell Surface/genetics , Retina/metabolism , Animals , Base Sequence , Electroretinography , Genes, Reporter , Genetic Vectors/genetics , Guanylate Cyclase/metabolism , Macaca , Mice , Mice, Knockout , Molecular Imaging/methods , Promoter Regions, Genetic , RNA, Guide, Kinetoplastida/chemistry , RNA, Guide, Kinetoplastida/genetics , Receptors, Cell Surface/metabolism , Retina/pathology
16.
Am J Pathol ; 187(3): 517-527, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28041994

ABSTRACT

RPE65 is an indispensable component of the retinoid visual cycle in vertebrates, through which the visual chromophore 11-cis-retinal (11-cis-RAL) is generated to maintain normal vision. Various blinding conditions in humans, such as Leber congenital amaurosis and retinitis pigmentosa (RP), are attributed to either homozygous or compound heterozygous mutations in RPE65. Herein, we investigated D477G missense mutation, an unprecedented dominant-acting mutation of RPE65 identified in patients with autosomal dominant RP. We generated a D477G knock-in (KI) mouse and characterized its phenotypes. Although RPE65 protein levels were decreased in heterozygous KI mice, their scotopic, maximal, and photopic electroretinography responses were comparable to those of wild-type (WT) mice in stationary condition. As shown by high-performance liquid chromatography analysis, levels of 11-cis-RAL in fully dark-adapted heterozygous KI mice were similar to that in WT mice. However, kinetics of 11-cis-RAL regeneration after light exposure were significantly slower in heterozygous KI mice compared with WT and RPE65 heterozygous knockout mice. Furthermore, heterozygous KI mice exhibited lower A-wave recovery compared with WT mice after photobleaching, suggesting a delayed dark adaptation. Taken together, these observations suggest that D477G acts as a dominant-negative mutant of RPE65 that delays chromophore regeneration. The KI mice provide a useful model for further understanding of the pathogenesis of RP associated with this RPE65 mutant and for the development of therapeutic strategies.


Subject(s)
Dark Adaptation/genetics , Gene Knock-In Techniques , Genes, Dominant , Mutation/genetics , Visual Pathways/metabolism , cis-trans-Isomerases/genetics , Animals , Chromatography, High Pressure Liquid , Electroretinography , Heterozygote , Isomerases/metabolism , Mice, Mutant Strains , Models, Animal , Opsins/metabolism , Photobleaching , RNA, Messenger/genetics , RNA, Messenger/metabolism , Regeneration , Retina/metabolism , Retina/pathology , Retinoids/metabolism , cis-trans-Isomerases/metabolism
17.
Hum Mol Genet ; 25(16): 3500-3514, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27365499

ABSTRACT

Peripherin 2 (Prph2) is a photoreceptor tetraspanin, and deletion of codon 153 (K153Δ) leads to retinitis pigmentosa, pattern dystrophy, and fundus flavimaculatus in the same family. To study this variability, we generated a K153Δ-Prph2 knockin mouse. K153Δ-Prph2 cannot form the complexes required for outer segment formation, and in cones cannot interact with its binding partner rod outer segment membrane protein 1. K153Δ causes dominant defects in rod and cone function; however, rod but not cone ultrastructure is improved by the presence of K153Δ-Prph2. Likewise, supplementation of K153Δ heterozygotes with WT-Prph2 results in structural but not functional improvements. These results support the idea that mutations may differentially affect Prph2's role as a structural component, and its role as a functional protein key for organizing membrane domains for cellular signalling. These roles may be different in rods and cones, thus contributing to the phenotypic heterogeneity that characterizes diseases associated with Prph2 mutations.


Subject(s)
Peripherins/genetics , Retinal Degeneration/genetics , Retinal Rod Photoreceptor Cells/metabolism , Animals , Codon/genetics , Gene Knock-In Techniques , Heterozygote , Humans , Mice , Retinal Cone Photoreceptor Cells/metabolism , Retinal Cone Photoreceptor Cells/ultrastructure , Retinal Degeneration/physiopathology , Retinal Rod Photoreceptor Cells/ultrastructure , Sequence Deletion
18.
Invest Ophthalmol Vis Sci ; 57(3): 787-97, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26934134

ABSTRACT

PURPOSE: Rod photoreceptor outer segment (OS) morphogenesis, structural integrity, and proper signal transduction rely on critical proteins found in the different OS membrane domains (e.g., plasma, disc, and disc rim membrane). Among these key elements are retinal degeneration slow (RDS, also known as peripherin-2), rhodopsin, and the beta subunit of the cyclic nucleotide gated channel (CNGB1a), which have been found to interact in a complex. The purpose of this study was to evaluate the potential interplay between these three proteins by examining retinal disease phenotypes in animal models expressing varying amounts of CNGB1a, rhodopsin, and RDS. METHODS: Outer segment trafficking, retinal function, and photoreceptor structure were evaluated using knockout mouse lines. RESULTS: Eliminating Cngb1 and reducing RDS leads to additive defects in RDS expression levels and rod electroretinogram (ERG) function, (e.g., Cngb1-/-/rds+/- versus rds+/- or Cngb1-/-) but not to additive defects in rod ultrastructure. These additive effects also manifested in cone function: Photopic ERG responses were significantly lower in the Cngb1-/-/rds+/- versus rds+/- or Cngb1-/-, suggesting that eliminating Cngb1 can accelerate the cone degeneration that usually presents later in the rds+/-. This was not the case with rhodopsin; reducing rhodopsin levels in concert with eliminating CNGB1a did not lead to phenotypes more severe than those observed in the Cngb1 knockout alone. CONCLUSIONS: These data support a role for RDS as the core component of a multiprotein plasma membrane-rim-disc complex that has both a structural role in photoreceptor OS formation and maintenance and a functional role in orienting proteins for optimal signal transduction.


Subject(s)
Cyclic Nucleotide-Gated Cation Channels/genetics , Gene Expression Regulation , Nerve Tissue Proteins/genetics , Peripherins/genetics , RNA/genetics , Retinal Cone Photoreceptor Cells/metabolism , Retinal Degeneration/genetics , Rhodopsin/genetics , Animals , Cyclic Nucleotide-Gated Cation Channels/biosynthesis , Electroretinography , Mice , Mice, Knockout , Microscopy, Electron, Transmission , Nerve Tissue Proteins/biosynthesis , Peripherins/biosynthesis , Retinal Cone Photoreceptor Cells/ultrastructure , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Rhodopsin/biosynthesis
19.
Invest Ophthalmol Vis Sci ; 56(13): 8187-98, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26720471

ABSTRACT

PURPOSE: The beta subunit of the rod cyclic nucleotide gated channel B1 (CNGB1) contains a proline/glutamic acid-rich N-terminal domain (GARP), which is also present in rods as a non-membrane-bound protein (GARP1/2). GARP2 and CNGB1 bind to retinal degeneration slow (RDS), which is present in the rims of rod and cone outer segment (OS) layers. Here we focus on the importance of RDS/GARP complexes in OS morphogenesis and stability. METHODS: Retinal structure, function, and biochemistry were assessed in GARP2-Tg transgenic mice crossed onto rds+/+, rds+/-, and rds-/- genetic backgrounds. RESULTS: GARP2 expression decreased in animals with reduced RDS levels. Overexpression of GARP2 led to abnormalities in disc stacking in GARP2-Tg/rds+/+ and the accumulation of abnormal vesicular structures in GARP2-Tg/rds+/- OS, as well as alterations in RDS-ROM-1 complex formation. These abnormalities were associated with diminished scotopic a- and b-wave amplitudes in GARP2-Tg mice on both the rds+/+ and rds+/- backgrounds. In addition, severe defects in cone function were observed in GARP2-Tg mice on all RDS backgrounds. CONCLUSIONS: Our results indicate that overexpression of GARP2 significantly exacerbates the defects in rod function associated with RDS haploinsufficiency and leads to further abnormalities in OS ultrastructure. These data also suggest that GARP2 expression in cones can be detrimental to cones. RDS/GARP interactions remain under investigation but are critical for both OS structure and function.


Subject(s)
Cyclic Nucleotide-Gated Cation Channels/genetics , DNA/genetics , Gene Expression Regulation , Retinal Cone Photoreceptor Cells/physiology , Retinal Degeneration/genetics , Retinal Rod Photoreceptor Cells/physiology , Animals , Blotting, Western , Cyclic Nucleotide-Gated Cation Channels/metabolism , Disease Models, Animal , Electroretinography , Mice , Mice, Transgenic , Microscopy, Electron, Transmission , Retinal Cone Photoreceptor Cells/ultrastructure , Retinal Degeneration/metabolism , Retinal Degeneration/physiopathology , Retinal Rod Photoreceptor Cells/ultrastructure
20.
PLoS One ; 9(6): e98939, 2014.
Article in English | MEDLINE | ID: mdl-24897172

ABSTRACT

Rod outer segment (OS) morphogenesis involves assembly of flattened discs circumscribed by a hairpin-like rim, however, the role of the rim and rim proteins such as retinal degeneration slow (RDS) and its homologue rod OS membrane protein-1 (ROM-1) in this process remains unclear. Here we show that without RDS, no disc/OS formation occurs, while without rhodopsin, small OS structures form containing aligned nascent discs. In the absence of both rhodopsin and RDS, RDS-associated degeneration is slowed, and ROM-1 is stabilized and trafficked to the OS. These animals (rho-/-/rds-/-) exhibit OSs slightly better than those lacking only RDS, but still without signs of disc formation. These results clearly demonstrate that OS morphogenesis is initiated by RDS-mediated rim formation, a process ROM-1 cannot recapitulate, with subsequent disc growth mediated by rhodopsin. The critical role of RDS in this process helps explain why photoreceptors are so sensitive to varied RDS levels, and why mutations in RDS cause debilitating retinal disease.


Subject(s)
Peripherins/genetics , Peripherins/metabolism , Rod Cell Outer Segment/metabolism , Animals , Eye Proteins/metabolism , Gene Expression , Membrane Proteins/metabolism , Mice , Mice, Knockout , Morphogenesis/genetics , Photoreceptor Cells/metabolism , Photoreceptor Cells/pathology , Protein Transport , Retinal Degeneration/genetics , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Rhodopsin/genetics , Rhodopsin/metabolism , Rod Cell Outer Segment/pathology , Rod Cell Outer Segment/ultrastructure , Tetraspanins
SELECTION OF CITATIONS
SEARCH DETAIL
...