Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Cancers (Basel) ; 15(24)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38136268

ABSTRACT

Radiotherapy is an integral component of multidisciplinary breast cancer care. Given how commonly radiotherapy is used in the treatment of breast cancer, many patients with recurrences have received previous radiotherapy. Patients with new primary breast cancer may also have received previous radiotherapy to the thoracic region. Curative doses and comprehensive field photon reirradiation (reRT) have often been avoided in these patients due to concerns for severe toxicities to organs-at-risk (OARs), such as the heart, lungs, brachial plexus, and soft tissue. However, many patients may benefit from definitive-intent reRT, such as patients with high-risk disease features such as lymph node involvement and dermal/epidermal invasion. Proton therapy is a potentially advantageous treatment option for delivery of reRT due to its lack of exit dose and greater conformality that allow for enhanced non-target tissue sparing of previously irradiated tissues. In this review, we discuss the clinical applications of proton therapy for patients with breast cancer requiring reRT, the currently available literature and how it compares to historical photon reRT outcomes, treatment planning considerations, and questions in this area warranting further study. Given the dosimetric advantages of protons and the data reported to date, proton therapy is a promising option for patients who would benefit from the added locoregional disease control provided by reRT for recurrent or new primary breast cancer.

3.
Nat Commun ; 13(1): 6483, 2022 10 29.
Article in English | MEDLINE | ID: mdl-36309495

ABSTRACT

Glioblastoma (GBM) is notorious for its immunosuppressive tumor microenvironment (TME) and is refractory to immune checkpoint blockade (ICB). Here, we identify calmodulin-dependent kinase kinase 2 (CaMKK2) as a driver of ICB resistance. CaMKK2 is highly expressed in pro-tumor cells and is associated with worsened survival in patients with GBM. Host CaMKK2, specifically, reduces survival and promotes ICB resistance. Multimodal profiling of the TME reveals that CaMKK2 is associated with several ICB resistance-associated immune phenotypes. CaMKK2 promotes exhaustion in CD8+ T cells and reduces the expansion of effector CD4+ T cells, additionally limiting their tumor penetrance. CaMKK2 also maintains myeloid cells in a disease-associated microglia-like phenotype. Lastly, neuronal CaMKK2 is required for maintaining the ICB resistance-associated myeloid phenotype, is deleterious to survival, and promotes ICB resistance. Our findings reveal CaMKK2 as a contributor to ICB resistance and identify neurons as a driver of immunotherapeutic resistance in GBM.


Subject(s)
Glioblastoma , Humans , Glioblastoma/drug therapy , Glioblastoma/genetics , CD8-Positive T-Lymphocytes , Tumor Microenvironment , Immunosuppression Therapy , Neurons/pathology , Calcium-Calmodulin-Dependent Protein Kinase Kinase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...