Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Opt Lett ; 48(19): 4997-5000, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37773369

ABSTRACT

The existence of new types of four-wave mixing Floquet solitons were recently realized numerically through a resonant phase matching in a photonic lattice of type-I Dirac cones; specifically, a honeycomb lattice of helical array waveguides imprinted on a weakly birefringent medium. We present a wide class of exact solutions in this system for the envelope solitons in dark-bright pairs and a "molecular" form of bright-dark combinations. Some of the solutions, red or blue detuned, are mode-locked in their momenta, while the others offer a spectrum of allowed momenta subject to constraints amongst the system and solution parameters. We show that the characteristically different solutions exist at and away from the band edge, with the exact band edge possessing a periodic pair of sinusoidal excitations akin to that of two-level systems apart from localized solitons. These could have possible applications for designing quantum devices.

2.
Cureus ; 14(7): e27129, 2022 Jul.
Article in English | MEDLINE | ID: mdl-36004037

ABSTRACT

Background Mitochondria are essential cellular organelles that are responsible for oxidative stress-induced damage in age-dependent neurodegenerations such as glaucoma. Previous studies have linked mitochondrial DNA (mtDNA) mutations to cellular energy shortages that result in eye degeneration. Methodology To look for nucleotide variations in mtDNA in exfoliation syndrome/glaucoma (XFS/XFG), we performed a polymerase chain reaction (PCR) to amplify the entire coding region of the mitochondrial genome from peripheral blood of XFS/XFG (n = 25) patients and controls (n = 25). Results This study identified a total of 65 variations in XFS/XFG patients, of which 25 (38%) variations were non-synonymous single-nucleotide polymorphism (nsSNPs). Out of 25 nsSNPs, seven (five nsSNP in MT-ND4 and two in MT-ATP6 gene) were predicted as pathogenic using four different software, namely, SIFT, Polyphene2, mutation taster, and MutPred2. The pathogenic nsSNPs were then subjected to structural change analysis using online tools. Conclusions The pathogenic nsSNPs were found in both proteins' transmembrane domains and were expected to be conserved, but with lower protein stability (ΔΔG <- 0.5), indicating a possibly harmful effect in exfoliation. However, three-dimensional protein analysis indicated that the predicted mutations in MT-ND4 and MT-ATP6 were unlikely to alter the protein function.

3.
Curr Issues Mol Biol ; 44(3): 1191-1202, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35723301

ABSTRACT

Exfoliation glaucoma (XFG) is the most recognizable form of secondary open-angle glaucoma associated with a high risk of blindness. This disease is characterized by white flaky granular deposits in the anterior chamber that leads to the elevation of intraocular pressure (IOP) and subsequent glaucomatous optic nerve damage. Conventionally, XFG is known to respond poorly to medical therapy, and surgical intervention is the only management option in most cases. Various genetic and nongenetic factors are known to be linked to the development of XFG. Despite decades of research on the genetic factors in exfoliation syndrome (XFS) by study groups and global consortia involving different ethnic populations, the pathogenesis of XFS and the mechanism of onset of glaucoma still remains an unsolved mystery. The key lies in understanding how the function of a gene (or set of genes) is altered by environmental triggers, along with other molecular events that underlie the key disease attributes, namely, oxidative stress and the disruption of the blood-aqueous barrier (BAB). It remains a challenge to evolve a theory encompassing all factions of molecular events occurring independently or parallelly that determine the disease manifestation (phenotype) or the stage of the disease in the eye (or in any tissue) in exfoliation. Our enhanced understanding of the underlying molecular pathophysiology of XFG, beyond the known genes or polymorphisms involved in the disease, will lead to improved diagnosis and management and the ability to recognize how the environment influences these key events that lead to the disease phenotype or disease progression. This review summarizes the recent observations and discoveries of four key factors that may hold the answers to the non-lysyl oxidase-like 1 (LOXL1) mechanisms behind XFG pathogenesis, namely, the epigenetic factor miRNA, disordered autophagy along with the potential involvement of mitochondrial mutations, and a compromised aqueous-blood barrier.

4.
Front Mol Biosci ; 9: 877250, 2022.
Article in English | MEDLINE | ID: mdl-35517867

ABSTRACT

Pseudoexfoliation (PXF) is characterized by the accumulation of the exfoliative material in the eye and high rates of blindness if left untreated. Pseudoexfoliation glaucoma (PXG) is generally diagnosed too late due to its asymptomatic nature, necessitating the development of new effective screening tools for the early diagnosis of the disease. Thus, the increasing prevalence of this disease due to an aging population has demanded the identification of suitable biomarkers for the early detection of the disease or detection of the onset of glaucoma in the eyes with PXF. We applied a proteomics strategy based on a high-throughput screening method for the determination of proteins involving PXF and PXG pathogenesis. The lens capsule (LC), iris, and trabecular meshwork (TM) samples with PXF and PXG were taken by surgical trabeculectomy, and control samples were taken from the donor corneal buttons obtained from the institutional eye bank to characterize the proteome profile. Peptides from the LC were analyzed using liquid chromatography with tandem mass spectrometry (LC-MS/MS). The protein of interest and cytokine/chemokine profiles were verified using immunohistochemistry and the bio-plex kit assay, respectively. There were a total of 1433 proteins identified in the human LC, of which 27 proteins were overexpressed and eight proteins were underexpressed in PXG compared with PXF. Overexpressed proteins such as fibromodulin, decorin, lysyl oxidase homolog 1, collagen alpha-1(I) chain, collagen alpha-3(VI) chain, and biglycan were the major components of the extracellular matrix (ECM) proteins involved in cell-matrix interactions or ECM proteoglycans and the assembly and cross-linking of collagen fibrils. The ECM composition and homeostasis are altered in glaucoma. Thus, quantitative proteomics is a method to discover molecular markers in the eye. Monitoring these events can help evaluate disease progression in future studies.

5.
Cells ; 10(12)2021 12 07.
Article in English | MEDLINE | ID: mdl-34943956

ABSTRACT

The lack of an animal model or an in vitro model limits experimental options for studying temporal molecular events in pseudoexfoliation syndrome (PXF), an age related fibrillopathy causing trabecular meshwork damage and glaucoma. Our goal was to create a workable in vitro model of PXF using primary human TM (HTM) cell lines simulating human disease. Primary HTM cells harvested from healthy donors (n = 3), were exposed to various concentrations (5 ng/mL, 10 ng/mL, 15 ng/mL) of transforming growth factor-beta1 (TGF-ß1) for different time points. Morphological change of epithelial-mesenchymal transition (EMT) was analyzed by direct microscopic visualization and immunoblotting for EMT markers. Expression of pro-fibrotic markers were analyzed by quantitative RT-PCR and immunoblotting. Cell viability and death in treated cells was analyzed using FACS and MTT assay. Protein complex and amyloid aggregate formation was analyzed by Immunofluorescence of oligomer11 and amyloid beta fibrils. Effect of these changes with pharmacological inhibitors of canonical and non-canonical TGF pathway was done to analyze the pathway involved. The expression of pro-fibrotic markers was markedly upregulated at 10 ng/mL of TGF-ß1 exposure at 48-72 h of exposure with associated EMT changes at the same time point. Protein aggregates were seen maximally at these time points that were found to be localized around the nucleus and in the extracellular matrix (ECM). EMT and pro-fibrotic expression was differentially regulated by different canonical and non-canonical pathways suggesting complex regulatory mechanisms. This in vitro model using HTM cells simulated the main characteristics of human disease in PXF like pro-fibrotic gene expression, EMT, and aggregate formation.


Subject(s)
Exfoliation Syndrome/genetics , Protein Aggregates/genetics , Trabecular Meshwork/metabolism , Transforming Growth Factor beta1/pharmacology , Amyloid beta-Peptides/adverse effects , Amyloid beta-Peptides/genetics , Cell Survival/drug effects , Epithelial-Mesenchymal Transition/drug effects , Exfoliation Syndrome/complications , Exfoliation Syndrome/pathology , Gene Expression Regulation/drug effects , Glaucoma/complications , Glaucoma/genetics , Glaucoma/pathology , Humans , Primary Cell Culture/methods , Protein Aggregates/drug effects , Trabecular Meshwork/pathology , Transforming Growth Factor beta1/genetics
6.
Clin Ophthalmol ; 15: 3027-3039, 2021.
Article in English | MEDLINE | ID: mdl-34285469

ABSTRACT

PURPOSE: The key differences in cell death mechanisms in the trabecular meshwork (TM) in adult moderate and severe primary glaucoma remain still unanswered. This study explored key differences in cell death mechanisms in the trabecular meshwork (TM) in adult moderate and severe primary glaucoma. DESIGN: In-vitro laboratory study on surgical specimens and primary cell lines. METHODS: Select cell death-related proteins differentially expressed on mass spectrometric analysis in ex-vivo dissected TM specimens patients with severe adult primary open-angle (POAG) or angle-closure glaucoma (PACG) compared to controls (cadaver donor cornea) were validated for temporal changes in cell death-related gene expression on in-vitro primary human TM cell culture after 48 hours (moderate) or 72 hours (severe) oxidative stress with H2O2 (400-1000 uM concentration). These were compared with histone modifications after oxidative stress in human TM (HTM) culture and peripheral blood of patients with moderate and severe glaucoma. RESULTS: Autophagy-related proteins seemed to be the predominant cell-death mechanism over apoptosis in ex-vivo dissected TM specimens in severe glaucoma. Analyzing HTM cell gene expression at 48 hours and 72 hours of oxidative stress, autophagy genes were up-regulated at 48-72 hours of exposure in contrast to apoptosis-related genes, showing down-regulation at 72 hours. There was associated increased expression of H3K14ac in HTM after 72 hours of oxidative stress and in peripheral blood of severe POAG and PACG. CONCLUSION: A preference of autophagy over apoptosis may underlie stage transition from moderate to severe glaucoma in the trabecular meshwork or peripheral blood, which may be tightly regulated by epigenetic modulators.

7.
Clin Ophthalmol ; 14: 3025-3038, 2020.
Article in English | MEDLINE | ID: mdl-33116354

ABSTRACT

PURPOSE: To investigate the microRNA (miRNA) profile in patients with different stages of pseudoexfoliation (PXF). METHODS: Peripheral blood of patients with PXF (naïve to medical therapy and with no systemic disease/drugs) with ocular hypertension (OHT) and pseudoexfoliation glaucoma (PXG) was evaluated in triplicate for miRNA profiling using polymerase chain reaction (PCR) arrays. Those identified in the discovery stage were validated with evaluation of serum transforming growth factor-ß1 (TGF-ß1) levels by ELISA. The downstream targets of TGF-ß1 and unfolded protein response (UPR) were analyzed using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Predicted targets of the identified miRNA and KEGG pathway analysis were done using miRbase and DIANA tools mirPathv3.1. RESULTS: We found hsa-miR-122-5p, hsa-miR-124-3p and hsa-miR-424-5p to be upregulated in PXG targeting 3 specific pathways namely TGF-ß1, fibrosis/ECM and proteoglycan metabolism with common effectors like SMAD/3/2. The unfolded protein response (UPR) genes were significantly downregulated in all stages of PXF suggesting this as the key mechanism for protein aggregates in PXF syndrome. Serum TGF-ß1 was significantly upregulated as disease progressed to later stages in PXG. This elevation in advanced stages was associated with significantly differential expression of downstream pathways and fibrotic genes in OHT compared to PXG predominantly through the SMAD3, a canonical pathway marker. CONCLUSION: Circulatory miRNA differentially regulating TGF-ß1 and downstream targets including UPR genes may be the key mechanisms for glaucoma onset in PXF.

8.
Dev Psychobiol ; 56(1): 12-22, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23129442

ABSTRACT

Recent findings show that developmental vitamin D deficiency leads to altered brain morphology and behavioral development in the rat offspring. We examined the effects of different dietary vitamin D levels in rat dams on behavior and biochemistry of the offspring. Females were divided into five conditions and received diets containing 0, 1,5, 3.3, 6.0, or 10.0 IU/g of vitamin D3 from mating to weaning. Offspring were tested as juveniles and as adults for anxiety, social learning and behavior, and locomotion. Results show that both deficient and excessive levels of vitamin D3 in juveniles lead to altered physiology and behavior. In juveniles but not adults, variations in vitamin D were related to variations in measures of anxiety and marginally, activity levels. For social behaviors, both juveniles and adults were affected by mothers' diets. In general, offspring of animals receiving abnormal concentrations of vitamin D showed the most deficits.


Subject(s)
Behavior, Animal/drug effects , Cholecalciferol/pharmacology , Learning/drug effects , Motor Activity/drug effects , Prenatal Exposure Delayed Effects , Animals , Body Weight/drug effects , Female , Lactation/drug effects , Male , Pregnancy , Rats , Rats, Sprague-Dawley , Social Behavior
9.
Behav Brain Res ; 233(1): 79-89, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-22569575

ABSTRACT

Changes in neuron morphology, stemming from experiences in early life or adulthood, may be the basis for changes in behavior and their underlying functional mechanisms. For example, reproductive experience has been shown to significantly alter neuron morphology in the hippocampus and prefrontal cortex. In contrast to the effects of reproductive experience, a form of enrichment, on neuron morphology, our understanding of the effects of early social isolation on adult neuron morphology is limited. Therefore, the present study examined changes in neuron morphology in the dorsal (caudate nucleus) and ventral (nucleus accumbens, shell region) striatum and the medial preoptic area of adult virgin and postpartum females exposed to either artificial or maternal rearing during development. Primary results show that regardless of early social isolation, neurons in the caudate nucleus of postpartum females have decreased dendritic complexity compared to virgin females. Maternal experience also increased dendritic complexity in neurons of the nucleus accumbens shell. However, both early social isolation and maternal experience in adulthood influenced dendritic complexity in the medial preoptic area. Together these findings suggest that hypothalamic and striatal neurons show experience-dependent dendritic plasticity and the type and timing of these experiences differentially affect the location and degree of these morphological changes.


Subject(s)
Corpus Striatum/cytology , Dendrites/physiology , Hypothalamus/cytology , Maternal Behavior , Neurons/cytology , Social Isolation/psychology , Age Factors , Analysis of Variance , Animals , Animals, Newborn , Body Weight , Dendrites/ultrastructure , Female , Linear Models , Organ Size , Rats , Rats, Sprague-Dawley , Reproduction/physiology , Silver Staining
10.
Brain Res ; 1348: 10-20, 2010 Aug 12.
Article in English | MEDLINE | ID: mdl-20553878

ABSTRACT

Early life stress associated with being reared without mother, siblings, and nest affects the formation of neuronal networks during rat development. Prior work shows that in comparison to mother-reared male rats, artificial rearing results in elevated numbers of neurons in adulthood and reduced apoptosis during the first postnatal week. Replacement with stroking stimulation, designed to simulate mothers' licking, reversed these effects in most brain areas. The present communication explored the effects of early rearing manipulations on signaling proteins. Male rats were reared until postnatal day 7 either in an artificial-feeding paradigm (AR) or with their mothers (MR). AR animals received different amounts of maternal-like stimulation using a soft paintbrush. Brains were extracted and prepared for molecular assays of 1) apoptosis and 2) pro and anti-apoptotic proteins on day 7 of postnatal life. Results showed that stimulation of the AR pups reversed the effects of artificial rearing on apoptosis in a dose dependent manner; low and very high levels of stimulation were without effect whereas moderate levels of stimulation produced effects on apoptosis similar to effects seen in mother-reared controls. Moreover, this artificial rearing effect and the pattern of reversal with stroking were also found for levels of pro-apoptotic Bax protein, the ratio of Bax/Bcl-2 and levels of activated caspase-3 which we believe mediates programmed cell death.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Apoptosis/physiology , Brain/growth & development , Gene Expression Regulation, Developmental/physiology , Maternal Behavior/psychology , Animals , Animals, Newborn , Behavior, Animal , Brain/cytology , Caspases/metabolism , Female , In Situ Nick-End Labeling/methods , Male , Neurons/physiology , Rats , Rats, Sprague-Dawley , Signal Transduction/physiology , bcl-2-Associated X Protein/metabolism
11.
Brain Res ; 1158: 28-38, 2007 Jul 16.
Article in English | MEDLINE | ID: mdl-17543293

ABSTRACT

This study investigated the effects of prenatal stress and complete maternal deprivation, using the artificial rearing (AR) paradigm, on the expression of neural plasticity markers and hypothalamic-pituitary-adrenal (HPA) axis responsivity to stress. Rats were exposed to stress during gestation (day 10-21) and postnatally were either artificially reared (AR) or mother reared (MR). AR involves complete separation of the pup from both the dam and the litter throughout the pre-weaning period. In adulthood, we measured levels of corticosterone (CORT) in response to restraint stress. Also, we examined the expression of synaptophysin (SYN) and brain-derived neurotrophic factor (BDNF) in the medial prefrontal cortex (MPFC) and the nucleus accumbens (Nacc), areas of the brain that mediate behavioral activation and attention, among other behaviors. Earlier work on the same rats indicated that these behavioral endpoints, such as locomotor activity and sensorimotor gating, are affected by our prenatal and postnatal manipulations. Prenatal stress decreased CORT at 20 and 90 min post-stressor in MR, but not in AR, animals. Also, in comparison to MR groups, AR decreased SYN and BDNF expression in the MPFC and Nacc. Additional somatosensory 'licking-like' stroking stimulation partially reversed the effects of AR. Prenatal stress did not have a robust main effect but affected the impact of the postnatal rearing condition on SYN expression and stress-induced CORT. These results suggest that both prenatal and postnatal adversities have an influence on HPA axis responsivity and alter the expression of plasticity related neuronal proteins.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Corticosterone/blood , Maternal Deprivation , Prenatal Exposure Delayed Effects , Stress, Psychological/physiopathology , Synaptophysin/metabolism , Analysis of Variance , Animals , Animals, Newborn , Behavior, Animal , Brain/anatomy & histology , Brain/growth & development , Brain/metabolism , Female , Gene Expression Regulation, Developmental/physiology , Male , Pregnancy , Radioimmunoassay/methods , Rats , Rats, Sprague-Dawley , Restraint, Physical/methods
12.
Brain Res ; 1158: 11-27, 2007 Jul 16.
Article in English | MEDLINE | ID: mdl-17555725

ABSTRACT

Rat pups reared apart from their siblings, mother, and nest environment in the 'pup-in-a-cup' regime show many alterations in behavior reminiscent of the Institutional Inattention/Overactivity Syndrome that characterizes children whose first few months are spent in institutions. In this report, we compare mother-reared (MR) and artificially reared (AR) male rats in concentrations and distributions of brain proteins that are involved in normal brain development. When assessed during the juvenile period and in adulthood, AR animals showed elevations in Neu-N (a neuronal marker) and in S-100 (an astrocyte marker) but reductions in synaptophysin (synapse protein), N-CAM (cell-adhesion molecule), GAP-43 (axon elongation protein), and BDNF (brain derived neurotrophic factor) in comparison to MR controls in many brain sites involved in attention, impulsivity, activity, and social behavior. Daily 'licking-like' stimulation provided to AR animals (AR-MAX) throughout early development that reverses many of the behavioral deficits, also reverses many of the isolation effects on brain proteins. Study 2 showed that elevations in the number of neurons in combination with decreases in functionality are associated with a reduction in neuronal pruning and apoptosis during the very early post-partum period in AR animals and their reversal through daily 'licking-like' stimulation.


Subject(s)
Brain/growth & development , Brain/metabolism , Gene Expression Regulation, Developmental/physiology , Maternal Deprivation , Nerve Tissue Proteins/metabolism , Analysis of Variance , Animals , Animals, Newborn , Apoptosis/physiology , Behavior, Animal/physiology , Brain/cytology , Cell Count/methods , Female , In Situ Nick-End Labeling , Male , Neurons/metabolism , Rats , Rats, Sprague-Dawley
13.
Biochem Biophys Res Commun ; 346(3): 879-88, 2006 Aug 04.
Article in English | MEDLINE | ID: mdl-16777069

ABSTRACT

A novel calmodulin-binding protein cmbB from Dictyostelium discoideum is encoded in a single gene. Northern analysis reveals two cmbB transcripts first detectable at 4 h during multicellular development. Western blotting detects an approximately 46.6 kDa protein. Sequence analysis and calmodulin-agarose binding studies identified a "classic" calcium-dependent calmodulin-binding domain (179IPKSLRSLFLGKGYNQPLEF198) but structural analyses suggest binding may not involve classic alpha-helical calmodulin-binding. The cmbB protein is comprised of tandem repeats of a newly identified IP22 motif ([I,L]Pxxhxxhxhxxxhxxxhxxxx; where h = any hydrophobic amino acid) that is highly conserved and a more precise representation of the FNIP repeat. At least eight Acanthamoeba polyphaga Mimivirus proteins and over 100 Dictyostelium proteins contain tandem arrays of the IP22 motif and its variants. cmbB also shares structural homology to YopM, from the plague bacterium Yersenia pestis.


Subject(s)
Calmodulin-Binding Proteins/metabolism , DNA Viruses/metabolism , Dictyostelium/metabolism , Amino Acid Sequence , Animals , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/metabolism , Base Sequence , Binding Sites , Calmodulin/metabolism , Calmodulin-Binding Proteins/chemistry , Calmodulin-Binding Proteins/genetics , Calmodulin-Binding Proteins/isolation & purification , Cell Line , Computational Biology , DNA Viruses/chemistry , DNA Viruses/genetics , Dictyostelium/chemistry , Dictyostelium/genetics , Dictyostelium/growth & development , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Structure, Quaternary , Protein Structure, Tertiary , Sequence Homology, Amino Acid
14.
Biochem Biophys Res Commun ; 331(4): 1494-502, 2005 Jun 17.
Article in English | MEDLINE | ID: mdl-15883042

ABSTRACT

Probing of a cDNA expression library from multicellular development of Dictyostelium discoideum using a recombinant radiolabelled calmodulin probe (35S-VU1-CaM) led to the isolation of a cDNA encoding a putative CaM-binding protein (CaMBP). The cDNA contained an open reading frame of 951 bp encoding a 227aa polypeptide (25.5 kDa). Sequence comparisons led to highly significant matches with cytosolic thymidine kinases (TK1; EC 2.7.1.21) from a diverse number of species including humans (7e-56; 59% Identities; 75% Positives) indicating that the encoded protein is D. discoideum TK1 (DdTK1; ThyB). DdTK1 has not been previously characterized in this organism. In keeping with its sequence similarity with DdTK1, antibodies against humanTK1 recognize DdTK1, which is expressed during growth but decreases in amount after starvation. A CaM-binding domain (CaMBD; 20GKTTELIRRIKRFNFANKKC30) was identified and wild type DdTK1 plus two constructs (DdTK deltaC36, DdTK deltaC75) possessing the domain were shown to bind CaM in vitro but only in the presence of calcium while a construct (DdTK deltaN72) lacking the region failed to bind to CaM. Thus, DdTK1 is a Ca2+-dependent CaMBP. Sequence alignments against TK1 from vertebrates to viruses show that CaM-binding region is highly conserved. The identified CaMBD overlaps the ATP-binding (P-loop) domain suggesting CaM might affect the activity of this kinase. Recombinant DdTK is enzymatically active and showed stimulation by CaM (113+/-0.5%) an in vitro enhancement that was prevented by co-addition of the CaM antagonists W7 (91.2+/-0.8%) and W13 (96.6+/-0.6%). The discovery that TK1 from D. discoideum, and possibly other species including humans and a large number of human viruses, is a Ca2+-dependent CaMBP opens up new avenues for research on this medically relevant protein.


Subject(s)
Calmodulin-Binding Proteins/isolation & purification , Dictyostelium/enzymology , Thymidine Kinase/isolation & purification , Amino Acid Sequence , Animals , Base Sequence , Calmodulin-Binding Proteins/chemistry , Calmodulin-Binding Proteins/metabolism , DNA Primers , DNA, Complementary , Dictyostelium/growth & development , Molecular Sequence Data , Polymerase Chain Reaction , Sequence Homology, Amino Acid , Thymidine Kinase/chemistry , Thymidine Kinase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...