Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Environ Geochem Health ; 46(8): 298, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980518

ABSTRACT

Grass carp intestinal waste-mediated biosynthesized nanosilver (AgNPs) was valorized using guaran and zeolite matrices, resulting in AgNPs-guaran, AgNPs-zeolite, and AgNPs-guaran -zeolite composites. The valorized products were examined using Environmental Scanning Electron Microscopy, Energy Dispersive X-ray analysis and X-ray Diffraction analysis to confirm uniform dispersion and entrapment of AgNPs within the matrixes. These valorized products were evaluated for their efficacy in detoxifying the ubiquitous and toxic hexavalent chromium (Cr6+) in aquatic environments, with Anabas testudineus exposed to 2 mg l-1 of Cr6+ for 60 days. Remarkable reduction of Cr6+ concentration to 0.86 ± 0.007 mg l-1 was achieved with AgNPs-guaran-zeolite composite, indicating successful reclamation of contaminated water and food safety assurance. Consistency in results was further corroborated by minimal stress-related alterations in fish physiological parameters and integrated biomarker response within the experimental group treated with the AgNPs-guaran-zeolite composite. Despite observed chromium accumulation in fish tissues, evidence of physiological stability was apparent, potentially attributable to trivalent chromium accumulation, serving as an essential nutrient for the fish. Additionally, the challenge study involving Anabas testudineus exposed to Aeromonas hydrophila exhibited the lowest cumulative mortality (11.11%) and highest survival rate (87.5%) within the same experimental group. The current study presents a novel approach encompassing the valorization of AgNPs for Cr6+ detoxification under neutral to alkaline pH conditions, offering a comprehensive framework for environmental remediation.


Subject(s)
Biomarkers , Chromium , Metal Nanoparticles , Silver , Water Pollutants, Chemical , Zeolites , Animals , Chromium/chemistry , Zeolites/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity , Silver/chemistry , Silver/toxicity , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Hydrogels/chemistry , Bioaccumulation , Inactivation, Metabolic , Galactans , Mannans , Plant Gums
2.
J Biomol Struct Dyn ; : 1-16, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37652402

ABSTRACT

Prospectively, agroecosystems for the growth of crops provide the potential fertile, productive, and tropical environment which attracts infestation by weedy plant species that compete with the primary crop plants. Infestation by weed is a major biotic stress factor faced by pigeonpea that hampers the productivity of the crop. In the modern era with the development of chemicals the problem of weed infestation is dealt with armours called herbicides. The most widely utilized, post-emergent, broad-spectrum herbicide has an essential active ingredient called glyphosate. Glyphosate mechanistically inhibits a chloroplastic enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) by competitively interacting with the PEP binding site which hinders the shikimate pathway and the production of essential aromatic amino acids (Phe, Tyr, Trp) and other secondary metabolites in plants. Moreover, herbicide spray for weed management is lethal to both the primary crop and the weeds. Therefore, it is critical to develop herbicide-resistant crops for field purposes to reduce the associated yield and economic losses. In this study, the in-silico analysis drove the selection and validation of the point mutations in the conserved region of the EPSPS gene, which confers efficient herbicide resistance to mutated-CcEPSPS enzyme along with the retention of the normal enzyme function. An optimized in-silico validation of the target mutation before the development of the genome-edited resistant plant lines is a prerequisite for testing their efficacy as a proof of concept. We validated the combination of GATIPS mutation for its no-cost effect at the enzyme level via molecular dynamic (MD) simulation.Communicated by Ramaswamy H. Sarma.


HIGHLIGHTSWeed infestation is a major biotic stress factor and a consistent problem in agriculture.Development of glyphosate-resistant mutation is crucial to minimize the yield loss in agriculturally or nutritionally important crops for field application.Present in-silico approach is a proof-of-concept for validation of the selected glyphosate-resistant mutations.The current study has validated the combination of GATIPS mutation for its glyphosate-resistant phenotype and no negative cost effect at the enzyme simulation level.

3.
Environ Res ; 235: 116648, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37451582

ABSTRACT

The current study investigates the potential utilization of poultry intestines for the synthesis of stable silver nanoparticles (AgNPs) and their impact on fish physiology. The AgNPs were synthesized and characterized using various analytical techniques. The toxicity of AgNPs on Anabas testudineus was evaluated, determining a 96-h LC50 value of 25.46 mg l-1. Subsequently, fish were exposed to concentrations corresponding to 1/10th, 1/25th, 1/50th, and 1/100th of the estimated LC50 for a duration of 60 days in a sub-acute study. A comprehensive range of biomarkers, including haematological, serum, oxidative stress, and metabolizing markers, were analyzed to assess the physiological responses of the fish. Additionally, histopathological examinations were conducted, and the accumulation of silver in biomarker organs was measured. The results indicate that silver tends to bioaccumulate in all biomarker organs in a dose- and time-dependent manner, except for the muscle tissue, where accumulation initially increased and subsequently decreased, demonstrating the fish's inherent ability for natural attenuation. Analysis of physiological data and integrated biomarker responses reveal that concentrations of 1/10th, 1/25th, and 1/50th of the LC50 can induce stress in the fish, while exposure to 1/100th of the LC50 shows minimal to no stress response. Overall, this study provides valuable insights into the toxicity and physiological responses of fish exposed to poultry waste biosynthesized AgNPs, offering potential applications in aquaculture while harnessing their unique features.


Subject(s)
Metal Nanoparticles , Animals , Metal Nanoparticles/toxicity , Silver/toxicity , Poultry , Fishes , Aquaculture , Biomarkers
4.
Environ Sci Pollut Res Int ; 30(36): 84999-85045, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37400699

ABSTRACT

The release of contaminants of environmental concern including heavy metals and metalloids, and contaminants of emerging concern including organic micropollutants from processing industries, pharmaceuticals, personal care, and anthropogenic sources, is a growing threat worldwide. Mitigating inorganic and organic contaminants, which can be coined as contaminants of environmental and emerging concern (CEECs), is a big challenge as traditional physicochemical processes are not economically viable for managing mixed contaminants of low concentrations. As a result, low-cost materials must be designed to provide high CEEC removal efficiency. One of the environmentally viable and energy-efficient approaches is biosorption, which involves using biomass or biopolymers isolated from plants or animals to decontaminate heavy metals in contaminated environments using inherent biological mechanisms. Among chemical constituents in plant biomass, cellulose, lignin, hemicellulose, proteins, polysaccharides, phenolic compounds, and animal biomass include polysaccharides and other compounds to bind heavy metals covalently and non-covalently. These functional groups include carboxyl, hydroxyl, carbonyl, amide, amine, and sulfhydryl. Cation-exchange capacities of these bioadsorbents can be improved by applying chemical modifications. The relevance of chemical constituents and bioactives in biosorbents derived from agricultural production such as food and fodder crops, bioenergy and cash crops, fruit and vegetable crops, medicinal and aromatic plants, plantation trees, aquatic and terrestrial weeds, and animal production such as dairy, goatery, poultry, duckery, and fisheries is highlighted in this comprehensive review for sequestering and bioremediation of CEECs, including as many as ten different heavy metals and metalloids co-contaminated with other organic micropollutants in circular bioresource utilization and one-health concepts.


Subject(s)
Metalloids , Metals, Heavy , Animals , Biodegradation, Environmental , Fisheries , Metals, Heavy/metabolism , Agriculture , Plants/metabolism
5.
Mar Pollut Bull ; 190: 114875, 2023 May.
Article in English | MEDLINE | ID: mdl-37002968

ABSTRACT

This study investigated the diet composition and microplastic contamination in six fish species collected from the creek area of northeastern Arabian Sea. The results show that the diet of the fish is mainly composed of shrimps, algae, fish, and zooplankton, with microplastics constituting up to 4.83 % (Index of Preponderance) of their diet. The average abundance of microplastics ranges from 5.82 to 7.69 items per fish, and their ingestion is influenced by seasonal variation, gut fullness, and trophic level. Microplastic contamination has no significant effect on the condition factor and hepatosomatic index of the fish species. However, polymer hazard index indicates that microplastic pollution in fish is associated with a low to high risk factor, which might cause potential harm to aquatic lives and higher vertebrates via food chain. Therefore, this study highlights the need for immediate attention and effective regulations to reduce microplastic pollution to protect marine life.


Subject(s)
Environmental Monitoring , Microplastics , Water Pollutants, Chemical , Animals , Biology , Diet , Environmental Monitoring/methods , Fishes , Plastics , Water Pollutants, Chemical/analysis
6.
FEBS Lett ; 597(3): 437-447, 2023 02.
Article in English | MEDLINE | ID: mdl-36520528

ABSTRACT

Among various post-translational modifications of histones, ubiquitylation plays a crucial role in transcription regulation. Histone mono-ubiquitylation by RING finger motif-containing ubiquitin ligases is documented in this respect. The RING finger ligases primarily regulate the cell cycle, where the anaphase-promoting complex/cyclosome (APC/C) takes charge as mitotic ubiquitin machinery. Reportedly, APC/C participates in transcriptional activation of the ubiquitin carrier protein UbcH10. However, the ubiquitylation activity of APC/C on the UBCH10 promoter remains elusive. This study shows that APC/C, with its adapter protein Cdc20, catalyses mono-ubiquitylation of Lysine-120 in histone 2B on the UBCH10 promoter. This study also identified a cell-cycle-specific pattern of this modification. Finally, APC/C-driven crosstalk of acetylation and ubiquitylation was found operational on UBCH10 trans-regulation. Together, these findings suggest a role for APC/C catalysed promoter ubiquitylation in managing transcription of cell cycle regulatory genes.


Subject(s)
Cell Cycle Proteins , Histones , Anaphase-Promoting Complex-Cyclosome/genetics , Anaphase-Promoting Complex-Cyclosome/metabolism , Histones/genetics , Histones/metabolism , Transcriptional Activation , Ubiquitination , Cell Cycle Proteins/genetics , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Cdc20 Proteins/genetics
7.
Environ Sci Pollut Res Int ; 29(54): 81130-81165, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36203045

ABSTRACT

Global agriculture is facing tremendous challenges due to climate change. The most predominant amongst these challenges are abiotic and biotic stresses caused by increased incidences of temperature extremes, drought, unseasonal flooding, and pathogens. These threats, mostly due to anthropogenic activities, resulted in severe challenges to crop and livestock production leading to substantial economic losses. It is essential to develop environmentally viable and cost-effective green processes to alleviate these stresses in the crops, livestock, and fisheries. The application of nanomaterials in farming practice to minimize nutrient losses, pest management, and enhance stress resistance capacity is of supreme importance. This paper explores innovative methods for synthesizing metallic and non-metallic nanoparticles using plants, animals, and fisheries wastes and their valorization to mitigate abiotic and biotic stresses and input use efficiency in climate-smart and stress-resilient agriculture including crop plants, livestock, and fisheries.


Subject(s)
Fisheries , Nanoparticles , Animals , Agriculture/methods , Crops, Agricultural , Droughts , Stress, Physiological
8.
Cancer Gene Ther ; 29(11): 1697-1706, 2022 11.
Article in English | MEDLINE | ID: mdl-35732909

ABSTRACT

Development of endocrine resistance in hormone-receptor-positive (HR+ve) subtype and lack of definitive target in triple-negative subtype challenge breast cancer management. Contributing to such endocrine resistance is a protein called CUEDC2. It degrades hormone receptors, estrogen receptor-α (ERα) and progesterone receptor. Higher level of CUEDC2 in ERα+ve breast cancer corresponded to poorer disease prognosis. It additionally influences mitotic progression. However, the crosstalk of these two CUEDC2-driven functions in the outcome of breast cancer remained elusive. We showed that CUEDC2 degrades ERα during mitosis, utilising the mitotic-ubiquitination-machinery. We elucidated the importance of mitosis-specific phosphorylation of CUEDC2 in this process. Furthermore, upregulated CUEDC2 overrode mitotic arrest, increasing aneuploidy. Finally, recruiting a prospective cohort of breast cancer, we found significantly upregulated CUEDC2 in HR-ve cases. Moreover, individuals with higher CUEDC2 levels showed a poorer progression-free-survival. Together, our data confirmed that CUEDC2 up-regulation renders ERα+ve malignancies to behave essentially as HR-ve tumors with the prevalence of aneuploidy. This study finds CUEDC2 as a potential prognostic marker and a therapeutic target in the clinical management of breast cancer.


Subject(s)
Breast Neoplasms , Estrogen Receptor alpha , Humans , Female , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Breast Neoplasms/pathology , Prospective Studies , Mitosis/genetics , Aneuploidy , Gene Expression Regulation, Neoplastic , Adaptor Proteins, Signal Transducing/metabolism
9.
Mar Policy ; 141: 105088, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35529170

ABSTRACT

COVID-19 pandemic is a serious threat for mankind having an extensive socio-economic impact. However, it is considered as an unfortunate event with some positive environmental effects where nature is retrieving itself. The water quality index in different places of the world was reported to be improved during the lockdown, which in turn whipped up the regenerative process of fishes, sea turtles, marine mammals, and aquatic birds. Additionally, ecologically sensitive areas such as mangroves and coral reefs were also seen rejuvenating during COVID-19 seal off. But these favourable implications are temporary as there is an unexpected surge in plastic waste generation in the form of PPE kits, face masks, gloves, and other healthcare equipment. Moreover, the outbreak of the pandemic resulted in the complete closure of fishing activities, decline in fish catch, market disruption, and change in consumer preference. To address these multidimensional effects of the COVID-19 pandemic, government organizations, NGOs, and other concerned authorities should extend their support to amplify the positive impacts of the lockdown and reduce the subsequent pollution level while encouraging the fisheries sector.

10.
Sci Total Environ ; 838(Pt 2): 156128, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-35605873

ABSTRACT

Abiotic stresses of various chemical contamination of physical, inorganic, organic and biotoxin origin and biotic stresses of bacterial, viral, parasitic and fungal origins are the significant constraints in achieving higher aquaculture production. Testing and rapid detection of these chemical and microbial contaminants are crucial in identifying and mitigating abiotic and biotic stresses, which has become one of the most challenging aspects in aquaculture and culture-based fisheries. The classical analytical techniques, including titrimetric methods, spectrophotometric, mass spectrometric, spectroscopic, and chromatographic techniques, are tedious and sometimes inaccessible when required. The development of novel and improved bioanalytical methods for rapid, selective and sensitive detection is a wide and dynamic field of research. Biosensors offer precise detection of biotic and abiotic stressors in aquaculture and culture-based fisheries within no time. This review article allows filling the knowledge gap for detection and monitoring of chemical and microbial contaminants of abiotic and biotic origin in aquaculture and culture-based fisheries using nano(bio-) analytical technologies, including nano(bio-)molecular and nano(bio-)sensing techniques.


Subject(s)
Fisheries , Stress, Physiological , Aquaculture
SELECTION OF CITATIONS
SEARCH DETAIL
...