Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 129(16): 160502, 2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36306753

ABSTRACT

Continuous-time quantum walks provide a natural framework to tackle the fundamental problem of finding a node among a set of marked nodes in a graph, known as spatial search. Whether spatial search by continuous-time quantum walk provides a quadratic advantage over classical random walks has been an outstanding problem. Thus far, this advantage is obtained only for specific graphs or when a single node of the underlying graph is marked. In this Letter, we provide a new continuous-time quantum walk search algorithm that completely resolves this: our algorithm can find a marked node in any graph with any number of marked nodes, in a time that is quadratically faster than classical random walks. The overall algorithm is quite simple, requiring time evolution of the quantum walk Hamiltonian followed by a projective measurement. A key component of our algorithm is a purely analogue procedure to perform operations on a state of the form e^{-tH^{2}}|ψ⟩, which, for a given Hamiltonian H, only requires evolving H for time scaling as sqrt[t]. This allows us to quadratically fast-forward the dynamics of a continuous-time classical random walk. The applications of our Letter thus go beyond the realm of quantum walks and can lead to new analog quantum algorithms for preparing ground states of Hamiltonians or solving optimization problems.

2.
Phys Rev Lett ; 124(5): 050501, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-32083889

ABSTRACT

The fundamental problem of sampling from the limiting distribution of quantum walks on networks, known as mixing, finds widespread applications in several areas of quantum information and computation. Of particular interest in most of these applications is the minimum time beyond which the instantaneous probability distribution of the quantum walk remains close to this limiting distribution, known as the "quantum mixing time". However, this quantity is only known for a handful of specific networks. In this Letter, we prove an upper bound on the quantum mixing time for almost all networks, i.e., the fraction of networks for which our bound holds, goes to one in the asymptotic limit. To this end, using several results in random matrix theory, we find the quantum mixing time of Erdös-Renyi random networks: networks of n nodes where each edge exists with probability p independently. For example, for dense random networks, where p is a constant, we show that the quantum mixing time is O(n^{3/2+o(1)}). In addition to opening avenues for the analytical study of quantum dynamics on random networks, our work could find applications beyond quantum information processing. Owing to the universality of Wigner random matrices, our results on the spectral properties of random graphs hold for general classes of random matrices that are ubiquitous in several areas of physics. In particular, our results could lead to novel insights into the equilibration times of isolated quantum systems defined by random Hamiltonians, a foundational problem in quantum statistical mechanics.

3.
Phys Rev Lett ; 119(22): 220503, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29286791

ABSTRACT

To investigate the performance of quantum information tasks on networks whose topology changes in time, we study the spatial search algorithm by continuous time quantum walk to find a marked node on a random temporal network. We consider a network of n nodes constituted by a time-ordered sequence of Erdös-Rényi random graphs G(n,p), where p is the probability that any two given nodes are connected: After every time interval τ, a new graph G(n,p) replaces the previous one. We prove analytically that, for any given p, there is always a range of values of τ for which the running time of the algorithm is optimal, i.e., O(sqrt[n]), even when search on the individual static graphs constituting the temporal network is suboptimal. On the other hand, there are regimes of τ where the algorithm is suboptimal even when each of the underlying static graphs are sufficiently connected to perform optimal search on them. From this first study of quantum spatial search on a time-dependent network, it emerges that the nontrivial interplay between temporality and connectivity is key to the algorithmic performance. Moreover, our work can be extended to establish high-fidelity qubit transfer between any two nodes of the network. Overall, our findings show that one can exploit temporality to achieve optimal quantum information tasks on dynamical random networks.


Subject(s)
Information Services , Models, Theoretical , Quantum Theory , Algorithms
4.
Phys Rev Lett ; 116(24): 249901, 2016 Jun 17.
Article in English | MEDLINE | ID: mdl-27367413

ABSTRACT

This corrects the article DOI: 10.1103/PhysRevLett.116.100501.

5.
Phys Rev Lett ; 116(10): 100501, 2016 Mar 11.
Article in English | MEDLINE | ID: mdl-27015464

ABSTRACT

The problem of finding a marked node in a graph can be solved by the spatial search algorithm based on continuous-time quantum walks (CTQW). However, this algorithm is known to run in optimal time only for a handful of graphs. In this work, we prove that for Erdös-Renyi random graphs, i.e., graphs of n vertices where each edge exists with probability p, search by CTQW is almost surely optimal as long as p≥log^{3/2}(n)/n. Consequently, we show that quantum spatial search is in fact optimal for almost all graphs, meaning that the fraction of graphs of n vertices for which this optimality holds tends to one in the asymptotic limit. We obtain this result by proving that search is optimal on graphs where the ratio between the second largest and the largest eigenvalue is bounded by a constant smaller than 1. Finally, we show that we can extend our results on search to establish high fidelity quantum communication between two arbitrary nodes of a random network of interacting qubits, namely, to perform quantum state transfer, as well as entanglement generation. Our work shows that quantum information tasks typically designed for structured systems retain performance in very disordered structures.

6.
Sci Rep ; 5: 13304, 2015 Sep 02.
Article in English | MEDLINE | ID: mdl-26330082

ABSTRACT

Continuous time quantum walks provide an important framework for designing new algorithms and modelling quantum transport and state transfer problems. Often, the graph representing the structure of a problem contains certain symmetries that confine the dynamics to a smaller subspace of the full Hilbert space. In this work, we use invariant subspace methods, that can be computed systematically using the Lanczos algorithm, to obtain the reduced set of states that encompass the dynamics of the problem at hand without the specific knowledge of underlying symmetries. First, we apply this method to obtain new instances of graphs where the spatial quantum search algorithm is optimal: complete graphs with broken links and complete bipartite graphs, in particular, the star graph. These examples show that regularity and high-connectivity are not needed to achieve optimal spatial search. We also show that this method considerably simplifies the calculation of quantum transport efficiencies. Furthermore, we observe improved efficiencies by removing a few links from highly symmetric graphs. Finally, we show that this reduction method also allows us to obtain an upper bound for the fidelity of a single qubit transfer on an XY spin network.

7.
Interdiscip Sci ; 4(2): 128-32, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22843235

ABSTRACT

In deciphering the DNA structures, evolutions and functions, Cellular Automata (CA) plays a significant role. DNA can be thought as a one-dimensional multi-state CA, more precisely four states of CA namely A, T, C, and G which can be taken as numerals 0, 1, 2 and 3. Earlier, Sirakoulis et al. (2003) reported the DNA structure, evolution and function through quaternary logic one dimensional CA and the authors have found the simulation results of the DNA evolutions with the help of only four linear CA rules. The DNA sequences which are produced through the CA evolutions, however, are seen by us not to exist in the established databases of various genomes although the initial seed (initial global state of CA) was taken from the database. This problem motivated us to study the DNA evolutions from more fundamental point of view. Parallel to CA paradigm we have devised an enriched set of discrete transformations which have been named as Integral Value Transformations (IVT). Interestingly, on applying the IVT systematically, we have been able to show that each of the DNA sequence at various discrete time instances in IVT evolutions can be directly mapped to a specific DNA sequence existing in the database. This has been possible through our efforts of getting quantitative mathematical parameters of the DNA sequences involving fractals. Thus we have at our disposal some transformational mechanism between one DNA to another.


Subject(s)
Algorithms , Computational Biology/methods , Evolution, Molecular , Animals , Base Sequence , Humans , Mice , Molecular Sequence Data
SELECTION OF CITATIONS
SEARCH DETAIL
...