Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
AAPS J ; 26(1): 19, 2024 01 24.
Article in English | MEDLINE | ID: mdl-38267737

ABSTRACT

This report summarizes the proceedings for Day 1 Session 3 of the 2-day public workshop entitled "Best Practices for Utilizing Modeling Approaches to Support Generic Product Development," a jointly sponsored workshop by the US Food and Drug Administration (FDA) and the Center for Research on Complex Generics (CRCG) in the year 2022. The aims of this workshop were to discuss how to modernize approaches for efficiently demonstrating bioequivalence (BE), to establish their role in modern paradigms of generic drug development, and to explore and develop best practices for the use of modeling and simulation approaches in regulatory submissions and approval. The theme of this session is mechanistic modeling approaches supporting BE assessments for oral drug products. As a summary, with more successful cases of PBPK absorption modeling being developed and shared, the general strategies/frameworks on using PBPK for oral products are being formed; this will help further evolvement of this area. In addition, the early communications between the industry and the agency through appropriate pathways (e.g., pre-abbreviated new drug applications (pre-ANDA) meetings) are encouraged, and this will speed up the successful development and utility of PBPK modeling for oral products.


Subject(s)
Drug Development , Drugs, Generic , United States , Therapeutic Equivalency , Computer Simulation , United States Food and Drug Administration
2.
J Pharm Pharmacol ; 67(7): 951-62, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25827848

ABSTRACT

OBJECTIVES: This study attempts to investigate the antimicrobial properties of Kalanchoe blossfeldiana with a particular reference to quorum sensing (QS)-mediated biofilm formation. METHODS: The methanol extract of K. blossfeldiana leaves (MEKB) was evaluated for antimicrobial properties including QS-controlled production of biofilm (including virulence factor, motility and lactone formation) in Pseudomonas aeruginosa. Methanol extract of K. blossfeldiana was also evaluated for anti-cytokine (tumour necrosis factor-alpha, interleukin-6 and interleukin-1 beta) properties in peripheral blood mononuclear cells (PBMC). KEY FINDINGS: Methanol extract of K. blossfeldiana exhibited antimicrobial effect on clinical isolates, as well as standard reference strains. Pseudomonas aeruginosa exposed to MEKB (subminimum inhibitory concentration (MIC)) displayed reduced biofilm formation, whereas supra-MIC produced destruction of preformed biofilms. Methanol extract of K. blossfeldiana reduced the secretion of virulence factors (protease and pyoverdin) along with generation of acyl homoserine lactone (AHL). Confocal laser scanning microscopy images indicate reduction of biofilm thickness. The extract also reduced cytokine formation in lipopolysaccharide-stimulated PBMC. CONCLUSIONS: Kalanchoe blossfeldiana was found to interfere with AHL production, which in turn may be responsible for downregulating QS-mediated production of biofilm and virulence. This first report on the antibiofilm and anticytokine properties of this plant may open up new vistas for future exploration of this plant for combating biofilm-related resistant infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Drug Resistance/drug effects , Kalanchoe/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Quorum Sensing/drug effects , Anti-Bacterial Agents/chemistry , Cells, Cultured , Humans , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Leukocytes, Mononuclear/drug effects , Plant Leaves/chemistry , Pseudomonas aeruginosa/drug effects , Tumor Necrosis Factor-alpha/metabolism
3.
Drug Dev Ind Pharm ; 41(10): 1667-73, 2015.
Article in English | MEDLINE | ID: mdl-25494535

ABSTRACT

Prediction of the in vivo performance of the drug product from the in vitro studies is the major challenging job for the pharmaceutical industries. From the current regulatory perspective, biorelevant dissolution media should now be considered as quality control media in order to avoid the risk associated. Physiological based pharmacokinetic models (PBPK) coupled with biorelevant dissolution medium is widely used in simulation and prediction of the plasma drug concentration and in vivo drug performance. The present investigation deals with the evaluation of biorelevant dissolution media as well as in vivo drug performance by PBPK modelling using STELLA® simulation software. The PBPK model was developed using STELLA® using dissolution kinetics, solubility, standard gastrointestinal parameters and post-absorptive disposition parameters. The drug product selected for the present study includes Linezolid film-coated immediate-release tablets (Zyvox), Tacrolimus prolonged-release capsules (Advagraf), Valganciclovir tablets (Valcyte) and Mesalamine controlled-release capsules (Pentasa) each belonging to different biopharmaceutics classification system (BCS). The simulated plasma drug concentration was analyzed and pharmacokinetic parameters were calculated and compared with the reported values. The result from the present investigation indicates that STELLA® when coupled with biorelevant dissolution media can predict the in vivo performance of the drug product with prediction error less than 20% irrespective of the dosage form (immediate release versus modified release) and BCS Classification. Thus, STELLA® can be used for in vivo drug prediction which will be helpful in generic drug development.


Subject(s)
Computer Simulation , Drug Liberation , Models, Biological , Capsules/chemistry , Ganciclovir/analogs & derivatives , Ganciclovir/chemistry , Humans , Linezolid/chemistry , Mesalamine/chemistry , Solubility , Tablets/chemistry , Tacrolimus/chemistry , Valganciclovir
4.
Springerplus ; 3: 666, 2014.
Article in English | MEDLINE | ID: mdl-26034680

ABSTRACT

Telescopium telescopium, a marine mollusc collected from Sundarban mangrove, belongs to the largest mollusca phylum in the world and exudes a blue secretion when stimulated mechanically. The blue secretion was found to metabolize (preferentially) para-amino benzoic acid, a substrate for N-acetyl transferase (NAT), thereby indicating acetyl transferase like activity of the secretion. Attempts were also made to characterise bioactive fraction of the blue secretion and to further use this as a biomarker for monitoring of marine pollution. NAT like enzyme from marine mollusc is a potential candidate for detoxification of different harmful chemicals. A partially purified extract of blue secretion was obtained by fractional precipitation with (NH4)2SO4. From different fractions obtained by precipitation, the 0-30% fraction (30S) displayed NAT like activity (using para amino benzoic acid as a substrate with para nitrophenyl phosphate or acetyl coenzyme A as acetyl group donors). Maximum NAT like enzyme activity was attained at 25°C and at a pH of 6. The enzyme activity was found to be inhibited by 5 mM phenyl methyl sulfonyl fluoride. The divalent metal ions reduced NAT like activity of 30S. Moreover, Cu(2+) and Zn(2+) (at concentration of 1 mM) completely inhibited NAT activity. The thermal stability and bench-top stability studies were performed and it was found that the enzyme was stable at room temperature for more than 24 hours. Results from the present study further indicate that heavy metal content in blue secretion gradually decreased from pre-monsoon to post-monsoon season, which also corresponded to the change in NAT like activity. Therefore, this article stresses the importance of biomarker research for monitoring pollution.

SELECTION OF CITATIONS
SEARCH DETAIL
...