Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 9(9)2019 Sep 16.
Article in English | MEDLINE | ID: mdl-31527405

ABSTRACT

In the present investigation, the buckling behavior of Euler-Bernoulli nanobeam, which is placed in an electro-magnetic field, is investigated in the framework of Eringen's nonlocal theory. Critical buckling load for all the classical boundary conditions such as "Pined-Pined (P-P), Clamped-Pined (C-P), Clamped-Clamped (C-C), and Clamped-Free (C-F)" are obtained using shifted Chebyshev polynomials-based Rayleigh-Ritz method. The main advantage of the shifted Chebyshev polynomials is that it does not make the system ill-conditioning with the higher number of terms in the approximation due to the orthogonality of the functions. Validation and convergence studies of the model have been carried out for different cases. Also, a closed-form solution has been obtained for the "Pined-Pined (P-P)" boundary condition using Navier's technique, and the numerical results obtained for the "Pined-Pined (P-P)" boundary condition are validated with a closed-form solution. Further, the effects of various scaling parameters on the critical buckling load have been explored, and new results are presented as Figures and Tables. Finally, buckling mode shapes are also plotted to show the sensitiveness of the critical buckling load.

2.
Neural Netw ; 103: 44-54, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29626732

ABSTRACT

Explaining causal reasoning in the form of directed acyclic graphs (DAGs) yields nodal structures with multivariate relationships. In real-world phenomena, these effects can be seen as multiple feature dependency with unmeasured external influences or noises. The bivariate models for causal discovery simply miss to find the multiple feature dependency criteria in the causal models. Here, we propose a multivariate additive noise model (MANM) to solve these issues while analyzing and presenting a multi-nodal causal structure. We introduce new criteria of causal independence for qualitative analysis of causal models and causal influence factor (CIF) for the successful discovery of causal directions in the multivariate system. The scores of CIF provide the information for the goodness of casual inference. The identifiability of the proposed model to discover linear, non-linear causal relations is verified in simulated, real-world datasets and the ability to construct the complete causal model. In comparison test, MANM has out performed Independent Component Analysis based Linear Non-Gaussian Acyclic Model (ICA-LiNGAM), Greedy DAG Search (GDS) and Regression with Sub-sequent Independent Test (RESIT), and performed better for Gaussian and non-Gaussian mixture models with both correlated and uncorrelated feature relations. In performance test, different model fitting errors which occur during causal model construction are discussed and the performance of MANM in comparison to ICA-LiNGAM, GDS and RESIT is provided. Results show that MANM has better causal model construction ability, producing few extra sets of direction with no missing or wrong directions and can estimate every possible causal direction in complex feature sets.


Subject(s)
Linear Models , Models, Theoretical , Multivariate Analysis , Nonlinear Dynamics , Normal Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...