Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Virol ; 95(1): e28362, 2023 01.
Article in English | MEDLINE | ID: mdl-36453088

ABSTRACT

We probed the lifecycle of Epstein-Barr virus (EBV) on a cell-by-cell basis using single cell RNA sequencing (scRNA-seq) data from nine publicly available lymphoblastoid cell lines (LCLs). While the majority of LCLs comprised cells containing EBV in the latent phase, two other clusters of cells were clearly evident and were distinguished by distinct expression of host and viral genes. Notably, both were high expressors of EBV LMP1/BNLF2 and BZLF1 compared to another cluster that expressed neither gene. The two novel clusters differed from each other in their expression of EBV lytic genes, including glycoprotein gene GP350. The first cluster, comprising GP350- LMP1hi cells, expressed high levels of HIF1A and was transcriptionally regulated by HIF1-α. Treatment of LCLs with Pevonedistat, a drug that enhances HIF1-α signaling, markedly induced this cluster. The second cluster, containing GP350+ LMP1hi cells, expressed EBV lytic genes. Host genes that are controlled by super-enhancers (SEs), such as transcription factors MYC and IRF4, had the lowest expression in this cluster. Functionally, the expression of genes regulated by MYC and IRF4 in GP350+ LMP1hi cells were lower compared to other cells. Indeed, induction of EBV lytic reactivation in EBV+ AKATA reduced the expression of these SE-regulated genes. Furthermore, CRISPR-mediated perturbation of the MYC or IRF4 SEs in LCLs induced the lytic EBV gene expression, suggesting that host SEs and/or SE target genes are required for maintenance of EBV latency. Collectively, our study revealed EBV-associated heterogeneity among LCLs that may have functional consequence on host and viral biology.


Subject(s)
Epstein-Barr Virus Infections , Herpesvirus 4, Human , Single-Cell Analysis , Humans , Cell Line , Data Analysis , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/metabolism , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/metabolism , Virus Latency , Lymphocytes/metabolism , Lymphocytes/virology
2.
Front Immunol ; 13: 1059133, 2022.
Article in English | MEDLINE | ID: mdl-36389670

ABSTRACT

EBV is a prevalent virus, infecting >90% of the world's population. This is an oncogenic virus that causes ~200,000 cancer-related deaths annually. It is, in addition, a significant contributor to the burden of autoimmune diseases. Thus, EBV represents a significant public health burden. Upon infection, EBV remains dormant in host cells for long periods of time. However, the presence or episodic reactivation of the virus increases the risk of transforming healthy cells to malignant cells that routinely escape host immune surveillance or of producing pathogenic autoantibodies. Cancers caused by EBV display distinct molecular behaviors compared to those of the same tissue type that are not caused by EBV, presenting opportunities for targeted treatments. Despite some encouraging results from exploration of vaccines, antiviral agents and immune- and cell-based treatments, the efficacy and safety of most therapeutics remain unclear. Here, we provide an up-to-date review focusing on underlying immune and environmental mechanisms, current therapeutics and vaccines, animal models and emerging technologies to study EBV-associated diseases that may help provide insights for the development of novel effective treatments.


Subject(s)
Autoimmune Diseases , Epstein-Barr Virus Infections , Neoplasms , Animals , Herpesvirus 4, Human , Immunologic Surveillance , Autoimmune Diseases/therapy , Autoimmune Diseases/complications , Neoplasms/complications
4.
J Virol ; 95(15): e0029421, 2021 07 12.
Article in English | MEDLINE | ID: mdl-33980601

ABSTRACT

The pathogenic mechanisms underlying severe SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection remain largely unelucidated. High-throughput sequencing technologies that capture genome and transcriptome information are key approaches to gain detailed mechanistic insights from infected cells. These techniques readily detect both pathogen- and host-derived sequences, providing a means of studying host-pathogen interactions. Recent studies have reported the presence of host-virus chimeric (HVC) RNA in transcriptome sequencing (RNA-seq) data from SARS-CoV-2-infected cells and interpreted these findings as evidence of viral integration in the human genome as a potential pathogenic mechanism. Since SARS-CoV-2 is a positive-sense RNA virus that replicates in the cytoplasm, it does not have a nuclear phase in its life cycle. Thus, it is biologically unlikely to be in a location where splicing events could result in genome integration. Therefore, we investigated the biological authenticity of HVC events. In contrast to true biological events like mRNA splicing and genome rearrangement events, which generate reproducible chimeric sequencing fragments across different biological isolates, we found that HVC events across >100 RNA-seq libraries from patients with coronavirus disease 2019 (COVID-19) and infected cell lines were highly irreproducible. RNA-seq library preparation is inherently error prone due to random template switching during reverse transcription of RNA to cDNA. By counting chimeric events observed when constructing an RNA-seq library from human RNA and spiked-in RNA from an unrelated species, such as the fruit fly, we estimated that ∼1% of RNA-seq reads are artifactually chimeric. In SARS-CoV-2 RNA-seq, we found that the frequency of HVC events was, in fact, not greater than this background "noise." Finally, we developed a novel experimental approach to enrich SARS-CoV-2 sequences from bulk RNA of infected cells. This method enriched viral sequences but did not enrich HVC events, suggesting that the majority of HVC events are, in all likelihood, artifacts of library construction. In conclusion, our findings indicate that HVC events observed in RNA-sequencing libraries from SARS-CoV-2-infected cells are extremely rare and are likely artifacts arising from random template switching of reverse transcriptase and/or sequence alignment errors. Therefore, the observed HVC events do not support SARS-CoV-2 fusion to cellular genes and/or integration into human genomes. IMPORTANCE The pathogenic mechanisms underlying SARS-CoV-2, the virus responsible for COVID-19, are not fully understood. In particular, relatively little is known about the reasons some individuals develop life-threatening or persistent COVID-19. Recent studies identified host-virus chimeric (HVC) reads in RNA-sequencing data from SARS-CoV-2-infected cells and suggested that HVC events support potential "human genome invasion" and "integration" by SARS-CoV-2. This suggestion has fueled concerns about the long-term effects of current mRNA vaccines that incorporate elements of the viral genome. SARS-CoV-2 is a positive-sense, single-stranded RNA virus that does not encode a reverse transcriptase and does not include a nuclear phase in its life cycle, so some doubts have rightfully been expressed regarding the authenticity of HVCs and the role played by endogenous retrotransposons in this phenomenon. Thus, it is important to independently authenticate these HVC events. Here, we provide several lines of evidence suggesting that the observed HVC events are likely artifactual.


Subject(s)
COVID-19/metabolism , Host-Pathogen Interactions , RNA, Viral/metabolism , RNA-Seq , SARS-CoV-2/physiology , Virus Replication , COVID-19/genetics , COVID-19/pathology , Cell Line, Tumor , Humans , RNA, Viral/genetics
5.
bioRxiv ; 2021 Feb 17.
Article in English | MEDLINE | ID: mdl-33619483

ABSTRACT

Pathogenic mechanisms underlying severe SARS-CoV2 infection remain largely unelucidated. High throughput sequencing technologies that capture genome and transcriptome information are key approaches to gain detailed mechanistic insights from infected cells. These techniques readily detect both pathogen and host-derived sequences, providing a means of studying host-pathogen interactions. Recent studies have reported the presence of host-virus chimeric (HVC) RNA in RNA-seq data from SARS-CoV2 infected cells and interpreted these findings as evidence of viral integration in the human genome as a potential pathogenic mechanism. Since SARS-CoV2 is a positive sense RNA virus that replicates in the cytoplasm it does not have a nuclear phase in its life cycle, it is biologically unlikely to be in a location where splicing events could result in genome integration. Here, we investigated the biological authenticity of HVC events. In contrast to true biological events such as mRNA splicing and genome rearrangement events, which generate reproducible chimeric sequencing fragments across different biological isolates, we found that HVC events across >100 RNA-seq libraries from patients with COVID-19 and infected cell lines, were highly irreproducible. RNA-seq library preparation is inherently error-prone due to random template switching during reverse transcription of RNA to cDNA. By counting chimeric events observed when constructing an RNA-seq library from human RNA and spike-in RNA from an unrelated species, such as fruit-fly, we estimated that ~1% of RNA-seq reads are artifactually chimeric. In SARS-CoV2 RNA-seq we found that the frequency of HVC events was, in fact, not greater than this background "noise". Finally, we developed a novel experimental approach to enrich SARS-CoV2 sequences from bulk RNA of infected cells. This method enriched viral sequences but did not enrich for HVC events, suggesting that the majority of HVC events are, in all likelihood, artifacts of library construction. In conclusion, our findings indicate that HVC events observed in RNA-sequencing libraries from SARS-CoV2 infected cells are extremely rare and are likely artifacts arising from either random template switching of reverse-transcriptase and/or sequence alignment errors. Therefore, the observed HVC events do not support SARS-CoV2 fusion to cellular genes and/or integration into human genomes.

6.
JCI Insight ; 5(18)2020 09 17.
Article in English | MEDLINE | ID: mdl-32809971

ABSTRACT

Acute graft-versus-host disease (aGVHD) can occur after hematopoietic cell transplant in patients undergoing treatment for hematological malignancies or inborn errors. Although CD4+ T helper (Th) cells play a major role in aGVHD, the mechanisms by which they contribute, particularly within the intestines, have remained elusive. We have identified a potentially novel subset of Th cells that accumulated in the intestines and produced the serine protease granzyme A (GrA). GrA+ Th cells were distinct from other Th lineages and exhibited a noncytolytic phenotype. In vitro, GrA+ Th cells differentiated in the presence of IL-4, IL-6, and IL-21 and were transcriptionally unique from cells cultured with either IL-4 or the IL-6/IL-21 combination alone. In vivo, both STAT3 and STAT6 were required for GrA+ Th cell differentiation and played roles in maintenance of the lineage identity. Importantly, GrA+ Th cells promoted aGVHD-associated morbidity and mortality and contributed to crypt destruction within intestines but were not required for the beneficial graft-versus-leukemia effect. Our data indicate that GrA+ Th cells represent a distinct Th subset and are critical mediators of aGVHD.


Subject(s)
Graft vs Host Disease/pathology , Graft vs Leukemia Effect/immunology , Granzymes/physiology , Hematopoietic Stem Cell Transplantation/adverse effects , Intestines/pathology , Lymphocyte Activation/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , Female , Graft vs Host Disease/etiology , Graft vs Host Disease/metabolism , Hematologic Neoplasms/therapy , Intestines/immunology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , STAT3 Transcription Factor/physiology , STAT6 Transcription Factor/physiology
7.
Cancer Res ; 79(23): 6010-6023, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31481499

ABSTRACT

Epstein-Barr virus (EBV) is a complex oncogenic symbiont. The molecular mechanisms governing EBV carcinogenesis remain elusive and the functional interactions between virus and host cells are incompletely defined. Here we present a comprehensive map of the host cell-pathogen interactome in EBV-associated cancers. We systematically analyzed RNA sequencing from >1,000 patients with 15 different cancer types, comparing virus and host factors of EBV+ to EBV- tissues. EBV preferentially integrated at highly accessible regions of the cancer genome, with significant enrichment in super-enhancer architecture. Twelve EBV transcripts, including LMP1 and LMP2, correlated inversely with EBV reactivation signature. Overexpression of these genes significantly suppressed viral reactivation, consistent with a "virostatic" function. In cancer samples, hundreds of novel frequent missense and nonsense variations in virostatic genes were identified, and variant genes failed to regulate their viral and cellular targets in cancer. For example, one-third of patients with EBV+ NK/T-cell lymphoma carried two novel nonsense variants (Q322X, G342X) of LMP1 and both variant proteins failed to restrict viral reactivation, confirming loss of virostatic function. Host cell transcriptional changes in response to EBV infection classified tumors into two molecular subtypes based on patterns of IFN signature genes and immune checkpoint markers, such as PD-L1 and IDO1. Overall, these findings uncover novel points of interaction between a common oncovirus and the human genome and identify novel regulatory nodes and druggable targets for individualized EBV and cancer-specific therapies. SIGNIFICANCE: This study provides a comprehensive map of the host cell-pathogen interactome in EBV+ malignancies.See related commentary by Mbulaiteye and Prokunina-Olsson, p. 5917.


Subject(s)
Epstein-Barr Virus Infections , Neoplasms , Gene Expression Profiling , Herpesvirus 4, Human , Humans , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...