Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 93(11): 113502, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36461505

ABSTRACT

During inertial confinement fusion experiments at the National Ignition Facility (NIF), a capsule filled with deuterium and tritium (DT) gas, surrounded by a DT ice layer and a high-density carbon ablator, is driven to the temperature and densities required to initiate fusion. In the indirect method, 2 MJ of NIF laser light heats the inside of a gold hohlraum to a radiation temperature of 300 eV; thermal x rays from the hohlraum interior couple to the capsule and create a central hotspot at tens of millions degrees Kelvin and a density of 100-200 g/cm3. During the laser interaction with the gold wall, m-band x rays are produced at ∼2.5 keV; these can penetrate into the capsule and preheat the ablator and DT fuel. Preheat can impact instability growth rates in the ablation front and at the fuel-ablator interface. Monitoring the hohlraum x-ray spectrum throughout the implosion is, therefore, critical; for this purpose, a Multilayer Mirror (MLM) with flat response in the 2-4 keV range has been installed in the NIF 37° Dante calorimeter. Precision engineering and x-ray calibration of components mean the channel will report 2-4 keV spectral power with an uncertainty of ±8.7%.

2.
Rev Sci Instrum ; 89(10): 10G122, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30399857

ABSTRACT

New X-ray imaging techniques are currently being developed at the "Commissariat à l'énergie atomique et aux énergies alternatives" in the context of Inertial Confinement Fusion. Fresnel zone plates (FZPs) are being considered as they can perform high-resolution and high-flux imaging in the X-ray domain. Here we present the characterization of a bi-lens FZPs resolution used in an imager prototype, designed for the LULI2000 laser facility. Characterization was performed on a synchrotron radiation facility and on a femtosecond laser facility. The resolution of the two FZP channels was measured to be between 2.4 µm and 5.2 µm and the expected total resolution for the diagnostic was to be 3.3 µm.

SELECTION OF CITATIONS
SEARCH DETAIL
...