Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 287(26): 21914-25, 2012 Jun 22.
Article in English | MEDLINE | ID: mdl-22474283

ABSTRACT

Cystic fibrosis (CF) is caused by mutations in the apical chloride channel cystic fibrosis transmembrane conductance regulator (CFTR) with 90% of patients carrying at least one deletion of the F508 (ΔF508) allele. This mutant form of CFTR is characterized by a folding and trafficking defect that prevents exit from the endoplasmic reticulum. We previously reported that ΔF508 CFTR can be recovered in a complex with Hsp90 and its co-chaperones as an on-pathway folding intermediate, suggesting that Δ508 CF disease arises due to a failure of the proteostasis network (PN), which manages protein folding and degradation in the cell. We have now examined the role of FK506-binding protein 8 (FKBP8), a component of the CFTR interactome, during the biogenesis of wild-type and ΔF508 CFTR. FKBP8 is a member of the peptidylprolyl isomerase family that mediates the cis/trans interconversion of peptidyl prolyl bonds. Our results suggest that FKBP8 is a key PN factor required at a post-Hsp90 step in CFTR biogenesis. In addition, changes in its expression level or alteration of its activity by a peptidylprolyl isomerase inhibitor alter CFTR stability and transport. We propose that CF is caused by the sequential failure of the prevailing PN pathway to stabilize ΔF508-CFTR for endoplasmic reticulum export, a pathway that can be therapeutically managed.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Tacrolimus Binding Proteins/chemistry , DNA/chemistry , Endoplasmic Reticulum/metabolism , Epithelial Cells/metabolism , Gene Expression Regulation , Heat-Shock Proteins/metabolism , Humans , Immunophilins/metabolism , Iodides/chemistry , Protein Denaturation , Protein Folding , Protein Structure, Tertiary , Temperature , Time Factors
2.
Nat Chem Biol ; 8(2): 185-96, 2011 Dec 25.
Article in English | MEDLINE | ID: mdl-22198733

ABSTRACT

Protein homeostasis (proteostasis) is essential for cellular and organismal health. Stress, aging and the chronic expression of misfolded proteins, however, challenge the proteostasis machinery and the vitality of the cell. Enhanced expression of molecular chaperones, regulated by heat shock transcription factor-1 (HSF-1), has been shown to restore proteostasis in a variety of conformational disease models, suggesting this mechanism as a promising therapeutic approach. We describe the results of a screen comprised of ∼900,000 small molecules that identified new classes of small-molecule proteostasis regulators that induce HSF-1-dependent chaperone expression and restore protein folding in multiple conformational disease models. These beneficial effects to proteome stability are mediated by HSF-1, FOXO, Nrf-2 and the chaperone machinery through mechanisms that are distinct from current known small-molecule activators of the heat shock response. We suggest that modulation of the proteostasis network by proteostasis regulators may be a promising therapeutic approach for the treatment of a variety of protein conformational diseases.


Subject(s)
Drug Evaluation, Preclinical , Molecular Chaperones/drug effects , Proteins/drug effects , Proteostasis Deficiencies/drug therapy , Transcription Factors/drug effects , Animals , Caenorhabditis elegans , Cell Line , DNA-Binding Proteins/drug effects , Forkhead Transcription Factors/drug effects , Heat Shock Transcription Factors , Homeostasis/drug effects , Humans , NF-E2-Related Factor 2/drug effects , Protein Conformation/drug effects , Proteins/chemistry , Proteins/physiology , Rats
3.
ACS Med Chem Lett ; 2(9): 703-707, 2011 Jul 21.
Article in English | MEDLINE | ID: mdl-21984958

ABSTRACT

Cystic fibrosis (CF) is a loss-of-function disease caused by mutations in the CF transmembrane conductance regulator (CFTR) protein, a chloride ion channel that localizes to the apical plasma membrane of epithelial cells. The most common form of the disease results from the deletion of phenylalanine-508 (ΔF508), leading to the accumulation of CFTR in the endoplasmic reticulum with a concomitant loss of chloride flux. We discovered that cyclic tetrapeptides, such as 11, 14, and 15, are able to correct the trafficking defect and restore cell surface activity of ΔF508-CFTR. Although this class of cyclic tetrapeptides is known to contain inhibitors of certain histone deacetylase (HDAC) isoforms, their HDAC inhibitory potencies did not directly correlate with their ability to rescue ΔF508-CFTR. In full HDAC profiling, 15 strongly inhibited HDACs 1, 2, 3, 10 and 11, but not HDACs 4-9. Although 15 had less potent IC(50) values than reference agent vorinostat (2) in HDAC profiling, it was markedly more potent than 2 in rescuing ΔF508-CFTR. We suggest that specific HDACs can have a differential influence on correcting ΔF508-CFTR, which may reflect both deacetylase and protein scaffolding actions.

SELECTION OF CITATIONS
SEARCH DETAIL
...