Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Genet Mol Res ; 15(3)2016 Aug 19.
Article in English | MEDLINE | ID: mdl-27706575

ABSTRACT

The interaction between polygalacturonase-inhibiting proteins (PGIPs), produced by plants, and endopolygalacturonases (PGs), produced by fungi, limits the destructive potential of PGs and can trigger plant defense responses. This study aimed to i) investigate variation in the expression of different common bean (Phaseolus vulgaris L.) genotypes and its relationship with resistance to white mold (Sclerotinia sclerotiorum); ii) determine the expression levels of PvPGIP genes at different time points after inoculation with white mold; and iii) investigate differences in PvPGIP gene expression between two white mold isolates with different levels of aggressiveness. Four bean lines were analyzed, including two lines from a recurrent selection for white mold (50/5 and 84/6), one resistant line that was not adapted to Brazilian conditions (Cornell 605), and one susceptible line (Corujinha). Gene expression was investigated at 0, 1, 2, 3, and 5 days after inoculation. The isolate UFLA 03 caused no significant difference in the relative expression of any gene examined, and was inefficient in discriminating among the genotypes. For the isolate UFLA 116, all of the genes were differentially expressed, as they were associated with resistance to white mold, and the expressions increased until the third day after inoculation. The 50/5 line was not significantly different from the Corujinha line for all of the genes analyzed. However, this line had a resistance level that was similar to that of Cornell 605, according to the straw test. Therefore, the incorporation of PvPGIP genes can increase the resistance of lines derived from recurrent selection.


Subject(s)
Ascomycota/growth & development , Phaseolus/genetics , Phaseolus/metabolism , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Proteins/biosynthesis , Plant Proteins/genetics , Brazil , Gene Expression , Phaseolus/immunology , Plant Diseases/immunology , Polygalacturonase/genetics
2.
J Anim Sci ; 94(4): 1472-81, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27136006

ABSTRACT

We aimed to evaluate the expression of genes related to the regulation of muscle protein turnover in the longissimus dorsi (LD) muscle of Angus and Nellore bulls and to estimate the within-breed correlations of gene expression and performance traits. Thirteen genes related to the IGF-1 and myostatin pathways were studied. Thirteen animals, with an initial average BW of 381.2 ± 11.8 kg, from each breed were used in a completely randomized 2 × 2 factorial design (2 breeds and 2 feeding levels). The diet consisted of corn silage and a corn-soybean meal concentrate in a roughage-to-concentrate ratio of 30:70. Cattle were fed ad libitum (with 9 animals from each breed) or feed restricted (a 55% restriction of total DMI of ad libitum-fed animals, calculated as percentage of metabolic BW, with 4 animals of each breed). The experimental period lasted for 82 d and it was preceded by a 28-d adaptation period. The performance traits evaluated were slaughter body weight, total ADG (from d 1 to 82 of the trial), initial ADG (from d 1 to 41 of the trial), final ADG (from d 42 to 82 of the trial), total DMI (from d 1 to 82 of the trial), initial DMI (from d 1 to 41 of the trial), final DMI (from d 42 to 82 of the trial), HCW, LD weight (LDW), and rib eye area (REA). After slaughter, samples were taken from the LD muscle between the 12th and 13th ribs for gene expression analysis by quantitative reverse transcription PCR. There was no difference ( > 0.05) in the expression of any of the genes studied between ad libitum-fed Angus and ad libitum-fed Nellore, whereas feed restriction increased the expression of (; < 0.001), (; = 0.05), and (; = 0.04) and decreased the expression of ( < 0.01). The REA was negatively correlated to (; = 0.01), (; = 0.02), and ( = 0.05). The HCW was negatively correlated to ( = 0.01) and ( = 0.01) and tended to be negatively correlated to ( = 0.07), whereas the LDW tended to be negatively correlated to ( = 0.08). The genes , , and seem to be important for muscle growth and may be worthy of further investigation as future strategies for increasing muscle in livestock.


Subject(s)
Body Composition/physiology , Cattle/genetics , Gene Expression Regulation/physiology , Muscle Proteins/metabolism , Animal Feed/analysis , Animals , Body Composition/genetics , Body Weight , Cattle/physiology , Diet/veterinary , Dietary Fiber/metabolism , Feeding Behavior/physiology , Insulin-Like Growth Factor I/metabolism , Male , Muscle Proteins/genetics , Silage/analysis
3.
Appl Biochem Biotechnol ; 177(4): 879-908, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26277190

ABSTRACT

Small RNAs influence the gene expression at the post-transcriptional level by guiding messenger RNA (mRNA) cleavage, translational repression, and chromatin modifications. In addition to model plants, the microRNAs (miRNAs) have been identified in different crop species. In this work, we developed a specific pipeline to search for coffee miRNA homologs on expressed sequence tags (ESTs) and genome survey sequences (GSS) databases. As a result, 36 microRNAs were identified and a total of 616 and 362 potential targets for Coffea arabica and Coffea canephora, respectively. The evolutionary analyses of these molecules were performed by comparing the primary and secondary structures of precursors and mature miRNAs with their orthologs. Moreover, using a stem-loop RT-PCR assay, we evaluated the accumulation of mature miRNAs in genomes with different ploidy levels, detecting an increase in the miRNAs accumulation according to the ploidy raising. Finally, a 5' RACE (Rapid Amplification of cDNA Ends) assay was performed to verify the regulation of auxin responsive factor 8 (ARF8) by MIR167 in coffee plants. The great variety of target genes indicates the functional plasticity of these molecules and reinforces the importance of understanding the RNAi-dependent regulatory mechanisms. Our results expand the study of miRNAs and their target genes in this crop, providing new challenges to understand the biology of these species.


Subject(s)
Coffea/genetics , Conserved Sequence , Evolution, Molecular , MicroRNAs/genetics , Base Sequence , Coffea/physiology , Gene Expression Profiling , Genomics , Molecular Sequence Data , Phylogeny , Sequence Alignment , Sequence Homology, Nucleic Acid , Species Specificity , Stress, Physiological
4.
J Anim Sci ; 92(12): 5426-36, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25403202

ABSTRACT

Degree of unsaturation of fatty acids, which is influenced by lipid source and level of metabolism in the rumen, is a major determinant in how dietary lipids affect genes that regulate beef marbling. A total of 28 Red Norte bulls with an initial live weight of 361±32 kg (P>0.05) were used in a completely randomized experimental design to analyze the expression of genes that are involved in lipid metabolism in the longissimus dorsi (LD) when diets contained soybean grain or rumen-protected fat, with or without monensin. Treatments were arranged as a 2×2 factorial, with 4 treatments and 7 replicates per treatment. Half of the animals that received soybean or rumen-protected fat were supplemented with 230 mg head(-1) d(-1) of monensin. Gene expression was analyzed by reverse-transcription quantitative PCR (RT-qPCR). Expression of sterol regulatory element-binding protein-1c (SREBP-1c) in the LD muscle was not affected by lipid source or monensin (P>0.05). There was an interaction effect (P<0.05) between lipid source and monensin for peroxisome proliferator-activated receptor α (PPAR-α) and stearoyl-CoA desaturase (SCD) expression, where greater gene expression was found in animals fed soybean plus monensin and the lower gene expression was found in animals fed rumen-protected fat plus monensin. Expression of lipoprotein lipase (LPL) and fatty acid-binding protein 4 (FABP4) were greater (P<0.05) in the LD muscle of animals fed soybean. Monensin had no effect on LPL and FABP4 expression when soybean without monensin was fed, but when rumen-protected fat was fed, monensin increased LPL expression and decreased FABP4 expression (P<0.05). Linoleic and arachidonic acids had negative correlations (P<0.05) with the expression of PPAR-α, SCD, FABP4, and LPL genes. PPAR-α gene expression was not correlated with SREBP-1c but was positively correlated with SCD, FABP4, LPL, and glutathione peroxidase (GPX1) gene expression (P<0.001). Lipid sources and monensin interact and alter the expression of PPAR-α, SCD, acetyl CoA carboxylase α (ACACA), LPL, FABP4, and GPX1. These changes in gene expression were most associated with arachidonic and α-linolenic acids and the ability of lipid sources and monensin to increase these fatty acids in tissues.


Subject(s)
Cattle/genetics , Dietary Fats/pharmacology , Gene Expression Regulation/drug effects , Lipid Metabolism/genetics , Monensin/pharmacology , Muscle, Skeletal/physiology , Analysis of Variance , Animals , Cattle/metabolism , DNA Primers/genetics , Dietary Fats/metabolism , Dietary Supplements , Fatty Acid-Binding Proteins/metabolism , Fatty Acids/metabolism , Lipid Metabolism/physiology , Male , PPAR alpha/metabolism , Real-Time Polymerase Chain Reaction/veterinary , Rumen/metabolism , Glycine max/metabolism , Stearoyl-CoA Desaturase/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism
5.
Genet Mol Res ; 12(2): 1347-59, 2013 Apr 25.
Article in English | MEDLINE | ID: mdl-23661458

ABSTRACT

Molecular analysis of floral induction in Arabidopsis has identified several flowering time genes related to 4 response networks defined by the autonomous, gibberellin, photoperiod, and vernalization pathways. Although grass flowering processes include ancestral functions shared by both mono- and dicots, they have developed their own mechanisms to transmit floral induction signals. Despite its high production capacity and its important role in biofuel production, almost no information is available about the flowering process in sugarcane. We searched the Sugarcane Expressed Sequence Tags database to look for elements of the flowering signaling pathway under photoperiodic control. Sequences showing significant similarity to flowering time genes of other species were clustered, annotated, and analyzed for conserved domains. Multiple alignments comparing the sequences found in the sugarcane database and those from other species were performed and their phylogenetic relationship assessed using the MEGA 4.0 software. Electronic Northerns were run with Cluster and TreeView programs, allowing us to identify putative members of the photoperiod-controlled flowering pathway of sugarcane.


Subject(s)
Flowers/genetics , Flowers/metabolism , Photoperiod , Saccharum/genetics , Saccharum/metabolism , Signal Transduction , Databases, Genetic , Expressed Sequence Tags , Gene Expression Profiling , Gene Expression Regulation, Plant , Genes, Plant , Phylogeny
6.
Genet Mol Res ; 10(2): 1277-89, 2011 Jun 28.
Article in English | MEDLINE | ID: mdl-21732291

ABSTRACT

The plant hormone ethylene is involved in several developmental and physiological processes in plants, including senescence, fruit ripening and organ abscission, as well as in biotic and abiotic stress responses. Initiation of these processes involves complex regulation of both ethylene biosynthesis and the ability of cells to perceive the hormone and respond in an appropriate manner, a process which is regulated both spatially and temporally. Ethylene is a gaseous hormone whose sensitivity is a key factor to limiting its response in target cells. We made a search of the Coffee Expressed Sequence Tag (CAFEST) database for expressed sequence tags related to known elements of the ethylene signaling pathway. Sequences showing a reliable similarity were clusterized, annotated and analyzed for conserved domains. Multiple alignments comprising the sequences that we found and sequences of ethylene signaling elements from other species were made, and their phylogeny was assessed by phylogenetic trees constructed with the MEGA4 software. The expression profile was assessed by in silico Northern blot analysis performed using the Cluster and TreeView programs. The CAFEST database was found to have a large number of sequences related to previously described ethylene signaling pathway elements, allowing identification of putative members from almost every step of this pathway. The phylogenetic trees demonstrated high similarity between the sequences found in the CAFEST and those from other species, and the electronic Northern blot analysis detected their expression in various tissues, development stages and stress conditions.


Subject(s)
Coffee/metabolism , Ethylenes/metabolism , Signal Transduction , Coffee/genetics , Expressed Sequence Tags , Genes, Plant , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...