Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 50(11): 5631-40, 2016 06 07.
Article in English | MEDLINE | ID: mdl-27149080

ABSTRACT

Formic acid (HCOOH) is one of the most abundant carboxylic acids and a dominant source of atmospheric acidity. Recent work indicates a major gap in the HCOOH budget, with atmospheric concentrations much larger than expected from known sources. Here, we employ recent space-based observations from the Tropospheric Emission Spectrometer with the GEOS-Chem atmospheric model to better quantify the HCOOH source from biomass burning, and assess whether fire emissions can help close the large budget gap for this species. The space-based data reveal a severe model HCOOH underestimate most prominent over tropical burning regions, suggesting a major missing source of organic acids from fires. We develop an approach for inferring the fractional fire contribution to ambient HCOOH and find, based on measurements over Africa, that pyrogenic HCOOH:CO enhancement ratios are much higher than expected from direct emissions alone, revealing substantial secondary organic acid production in fire plumes. Current models strongly underestimate (by 10 ± 5 times) the total primary and secondary HCOOH source from African fires. If a 10-fold bias were to extend to fires in other regions, biomass burning could produce 14 Tg/a of HCOOH in the tropics or 16 Tg/a worldwide. However, even such an increase would only represent 15-20% of the total required HCOOH source, implying the existence of other larger missing sources.


Subject(s)
Air Pollutants , Fires , Biomass , Disasters , Formates
2.
Atmos Meas Tech ; 7(7): 2297-2311, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-33717364

ABSTRACT

Presented is a detailed description of the TES (Tropospheric Emission Spectrometer)-Aura satellite formic acid (HCOOH) retrieval algorithm and initial results quantifying the global distribution of tropospheric HCOOH. The retrieval strategy, including the optimal estimation methodology, spectral microwindows, a priori constraints, and initial guess information, are provided. A comprehensive error and sensitivity analysis is performed in order to characterize the retrieval performance, degrees of freedom for signal, vertical resolution, and limits of detection. These results show that the TES HCOOH retrievals (i) typically provide at best 1.0 pieces of information; (ii) have the most vertical sensitivity in the range from 900 to 600 hPa with ~2 km vertical resolution; (iii) require at least 0.5 ppbv (parts per billion by volume) of HCOOH for detection if thermal contrast is greater than 5 K, and higher concentrations as thermal contrast decreases; and (iv) based on an ensemble of simulated retrievals, are unbiased with a standard deviation of ±0.4 ppbv. The relative spatial distribution of tropospheric HCOOH derived from TES and its associated seasonality are broadly correlated with predictions from a state-of-the-science chemical transport model (GEOS-Chem CTM). However, TES HCOOH is generally higher than is predicted by GEOS-Chem, and this is in agreement with recent work pointing to a large missing source of atmospheric HCOOH. The model bias is especially pronounced in summertime and over biomass burning regions, implicating biogenic emissions and fires as key sources of the missing atmospheric HCOOH in the model.

SELECTION OF CITATIONS
SEARCH DETAIL
...