Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Adv Mater ; 33(3): e2000228, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33296113

ABSTRACT

Molecular dopants are often added to semiconducting polymers to improve electrical conductivity. However, the use of such dopants does not always produce mobile charge carriers. In this work, ultrafast spectroscopy is used to explore the nature of the carriers created following doping of conjugated push-pull polymers with both F4 TCNQ (2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane) and FeCl3 . It is shown that for one particular push-pull material, the charge carriers created by doping are entirely non-conductive bipolarons and not single polarons, and that transient absorption spectroscopy following excitation in the infrared can readily distinguish the two types of charge carriers. Based on density functional theory calculations and experiments on multiple push-pull conjugated polymers, it is argued that the size of the donor push units determines the relative stabilities of polarons and bipolarons, with larger donor units stabilizing the bipolarons by providing more area for two charges to co-reside.

2.
Faraday Discuss ; 216(0): 339-362, 2019 Jul 11.
Article in English | MEDLINE | ID: mdl-31038132

ABSTRACT

It is generally presumed that the vast majority of carriers created by chemical doping of semiconducting polymer films are coulombically trapped by the counteranion, with only a small fraction that are free and responsible for the increased conductivity essential for organic electronic applications. At higher doping levels, it is also possible for bipolarons to form, which are expected to be less conductive than single polarons. Unfortunately, there is no simple way to distinguish free polarons, trapped polarons and bipolarons using steady-state spectroscopy. Thus, in this work, we use ultrafast transient absorption spectroscopy to study the dynamics of polarons in 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TNCQ)-doped films of poly(3-hexylthiophene-2,5-diyl) (P3HT) as a function of dopant concentration and excitation wavelength. When exciting on the red side of the polaron P1 transition, our transient absorption spectra and kinetics match well with what is expected for free 2-D-delocalized polarons; the measurements are not consistent with a recent theory of doped conjugated polymer electronic structure that suggests that the half-filled state lies deeper in the conduction band rather than in the bandgap. As we tune the excitation wavelength to the blue, our measurements reveal an increasing amount of slower transient kinetics that are consistent with the presence of coulombically-trapped polarons rather than bipolarons. Taking advantage of their distinct ultrafast relaxation kinetics as a type of action spectroscopy, we are able to extract the steady-state absorption spectra of free and trapped polarons as a function of dopant concentration. By comparing the results to theoretical models, we determine that in F4TCNQ-doped P3HT films, trapped polarons sit ∼0.4 nm away from the anion while free polarons reside between 0.7 and 0.9 nm from the counteranion. Perhaps counterintuitively, the ratio of trapped to free polarons increases at higher doping levels, an observation that is consistent with a plateau in the concentration-dependent conductivity of F4TCNQ-doped P3HT films.

3.
J Phys Chem B ; 121(18): 4722-4732, 2017 05 11.
Article in English | MEDLINE | ID: mdl-28412810

ABSTRACT

The ultrafast dynamics of 2'-deoxyguanosine 5'-monophosphate after excitation with ultraviolet light has been studied with femtosecond transient absorption (TA) and femtosecond stimulated Raman spectroscopy (FSRS). TA kinetics and transient anisotropy spectra reveal a rapid relaxation from the Franck-Condon region, producing an extremely red-shifted stimulated emission band at ∼440 nm that is formed after 200 fs and subsequent relaxation for 0.8-1.5 ps, consistent with prior studies. Viscosity dependence shows that the initial relaxation, before 0.5 ps, is the same in water or viscous glycerol/water mixtures, but after 0.5 ps the dynamics significantly slow down in a viscous solution. This indicates that large amplitude structural changes occur after 0.5 ps following photoexcitation. FSRS obtained with both 480 and 600 nm Raman pump pulses observe very broad Raman peaks at 509 and 1530 cm-1, as well as a narrower peak at 1179 cm-1. All of the Raman peaks decay with 0.7-1.3 ps time constants. The 1530 cm-1 peak also shows an increasing inhomogeneous linewidth over the first 0.3 ps. Our TA and FSRS data are consistent with a structurally inhomogeneous population in the S1 (La) state and, in particular, with previous theoretical models in which out-of-plane distortion at C2 and the amine move the molecule toward a conical intersection with the ground state. These FSRS data are the first to directly observe the structural inhomogeneity imparted upon the excited-state population by the broad, flat potential energy surface of the S1 (La) state.


Subject(s)
Deoxyguanine Nucleotides/chemistry , Ultraviolet Rays , Molecular Structure , Quantum Theory , Spectrum Analysis, Raman , Time Factors
4.
J Phys Chem B ; 119(31): 10025-34, 2015 Aug 06.
Article in English | MEDLINE | ID: mdl-26189800

ABSTRACT

The first step of photosynthesis is the absorption of light by antenna complexes. Recent studies of light-harvesting complexes using two-dimensional electronic spectroscopy have revealed interesting coherent oscillations. Some contributions to those coherences are assigned to electronic coherence and therefore have implications for theories of energy transfer. To assign these femtosecond data and to gain insight into the interplay among electronic and vibrational resonances, we need detailed information on vibrations and coherences in the excited electronic state compared to the ground electronic state. Here, we used broad-band transient absorption and femtosecond stimulated Raman spectroscopies to record ground- and excited-state coherences in four related photosynthetic proteins: PC577 from Hemiselmis pacifica CCMP706, PC612 from Hemiselmis virescens CCAC 1635 B, PC630 from Chroomonas CCAC 1627 B (marine), and PC645 from Chroomonas mesostigmatica CCMP269. Two of those proteins (PC630 and PC645) have strong electronic coupling while the other two proteins (PC577 and PC612) have weak electronic coupling between the chromophores. We report vibrational spectra for the ground and excited electronic states of these complexes as well as an analysis of coherent oscillations observed in the broad-band transient absorption data.


Subject(s)
Cryptophyta/chemistry , Light-Harvesting Protein Complexes/chemistry , Models, Molecular , Spectrum Analysis , Vibration
5.
Science ; 348(6241): 1340-3, 2015 Jun 19.
Article in English | MEDLINE | ID: mdl-26089510

ABSTRACT

The efficiency of biological photosynthesis results from the exquisite organization of photoactive elements that promote rapid movement of charge carriers out of a critical recombination range. If synthetic organic photovoltaic materials could mimic this assembly, charge separation and collection could be markedly enhanced. We show that micelle-forming cationic semiconducting polymers can coassemble in water with cationic fullerene derivatives to create photoinduced electron-transfer cascades that lead to exceptionally long-lived polarons. The stability of the polarons depends on the organization of the polymer-fullerene assembly. Properly designed assemblies can produce separated polaronic charges that are stable for days or weeks in aqueous solution.


Subject(s)
Fullerenes/chemistry , Photosynthesis , Polymers/chemistry , Electron Transport , Semiconductors
6.
Nat Chem ; 5(3): 174-81, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23422558

ABSTRACT

The anti-AIDS drug rilpivirine undergoes conformational changes to bind HIV-1 reverse transcriptase (RT), which is an essential enzyme for the replication of HIV. These changes allow it to retain potency against mutations that otherwise would render the enzyme resistant. Here we report that water molecules play an essential role in this binding process. Femtosecond experiments and theory expose the molecular level dynamics of rilpivirine bound to HIV-1 RT. Two nitrile substituents, one on each arm of the drug, are used as vibrational probes of the structural dynamics within the binding pocket. Two-dimensional vibrational echo spectroscopy reveals that one nitrile group is unexpectedly hydrogen-bonded to a mobile water molecule, not identified in previous X-ray structures. Ultrafast nitrile-water dynamics are confirmed by simulations. A higher (1.51 Å) resolution X-ray structure also reveals a water-drug interaction network. Maintenance of a crucial anchoring hydrogen bond may help retain the potency of rilpivirine against pocket mutations despite the structural variations they cause.


Subject(s)
HIV-1/enzymology , Nitriles/chemistry , Nitriles/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacology , Reverse Transcriptase Inhibitors/chemistry , Reverse Transcriptase Inhibitors/pharmacology , HIV Reverse Transcriptase/antagonists & inhibitors , HIV Reverse Transcriptase/chemistry , HIV Reverse Transcriptase/metabolism , HIV-1/genetics , HIV-1/metabolism , Humans , Models, Molecular , Protein Binding , Rilpivirine , Spectroscopy, Fourier Transform Infrared
7.
J Phys Chem B ; 116(35): 10522-34, 2012 Sep 06.
Article in English | MEDLINE | ID: mdl-22536751

ABSTRACT

4-(Dimethylamino)benzonitrile (DMABN) has been one of the most studied photoinduced charge-transfer (CT) compounds for over 50 years, but due to the complexity of its excited electronic states and the importance of both intramolecular and solvent reorganization, the detailed microscopic mechanism of the CT is still debated. In this work, we have probed the ultrafast intramolecular CT process of DMABN in methanol using broad-band transient absorption spectroscopy from 280 to 620 nm and ultraviolet femtosecond stimulated Raman spectroscopy (FSRS) incorporating a 330 nm Raman pump pulse. Global analysis of the transient absorption kinetics revealed dynamics occurring with three distinct time constants: relaxation from the Franck-Condon L(a) state to the lower locally excited (LE) L(b) state in 0.3 ps, internal conversion in 2-2.4 ps that produces a vibrationally hot CT state, and vibrational relaxation within the CT state occurring in 6 ps. The 330 nm FSRS spectra established the dynamics along three vibrational coordinates: the ring-breathing stretch, ν(ph), at 764 cm(-1) in the CT state; the quinoidal C═C stretch, ν(CC), at 1582 cm(-1) in the CT state; and the nitrile stretch, ν(CN), at 2096 cm(-1) in the CT state. FSRS spectra collected with a 400 nm Raman pump probed the dynamics of the 1174 cm(-1) CH bending vibration, δ(CH). Spectral shifts of each of these modes occur on the 2-20 ps time scale and were analyzed in terms of the vibrational anharmonicity of the CT state, calculated using density functional theory. The frequencies of the δ(CH) and ν(CC) modes upshift with a 6-7 ps time constant, consistent with their off-diagonal anharmonic coupling to other modes that act as receiving modes during the CT process and then cool in 6-7 ps. It was found that the spectral down-shifts of the δ(CH) and ν(CN) modes are inconsistent with vibrational anharmonicity and are instead due to changes in molecular structure and hydrogen bonding that occur as the molecule relaxes within the CT state potential energy surface.

8.
Appl Spectrosc ; 66(2): 227-32, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22449287

ABSTRACT

A scanning multichannel technique (SMT) has been implemented in femtosecond stimulated Raman spectroscopy (FSRS). By combining several FSRS spectra detected at slightly different positions of the spectrograph via SMT, we have eliminated the systematic noise patterns ("fixed pattern noise") due to the variation in sensitivity and noise characteristics of the individual charge-coupled device (CCD) pixels. In nonresonant FSRS, solvent subtraction can effectively remove the systematic noise pattern even without SMT. However, in the case of resonant FSRS, we show that a similar solvent subtraction procedure is ineffective at removing the noise patterns without SMT. Application of SMT results in averaged FSRS spectra with improved signal-to-noise ratios that approach the shot-noise limit.

9.
J Phys Chem B ; 110(40): 19956-65, 2006 Oct 12.
Article in English | MEDLINE | ID: mdl-17020382

ABSTRACT

The temporally overlapping, ultrafast electronic and vibrational dynamics of a model five-coordinate, high-spin heme in a nominally isotropic solvent environment has been studied for the first time with three complementary ultrafast techniques: transient absorption, time-resolved resonance Raman Stokes, and time-resolved resonance Raman anti-Stokes spectroscopies. Vibrational dynamics associated with an evolving ground-state species dominate the observations. Excitation into the blue side of the Soret band led to very rapid S2 --> S1 decay (sub-100 fs), followed by somewhat slower (800 fs) S1 --> S0 nonradiative decay. The initial vibrationally excited, non-Boltzmann S0 state was modeled as shifted to lower energy by 300 cm(-1) and broadened by 20%. On a approximately 10 ps time scale, the S0 state evolved into its room-temperature, thermal distribution S0 profile largely through VER. Anti-Stokes signals disappear very rapidly, indicating that the vibrational energy redistributes internally in about 1-3 ps from the initial accepting modes associated with S1 --> S0 internal conversion to the rest of the macrocycle. Comparisons of anti-Stokes mode intensities and lifetimes from TRARRS studies in which the initial excited state was prepared by ligand photolysis [Mizutani, T.; Kitagawa, T. Science 1997, 278, 443, and Chem. Rec. 2001, 1, 258] suggest that, while transient absorption studies appear to be relatively insensitive to initial preparation of the electronic excited state, the subsequent vibrational dynamics are not. Direct, time-resolved evaluation of vibrational lifetimes provides insight into fast internal conversion in hemes and the pathways of subsequent vibrational energy flow in the ground state. The overall similarity of the model heme electronic dynamics to those of biological systems may be a sign that the protein's influence upon the dynamics of the heme active site is rather subtle.


Subject(s)
Heme/chemistry , Porphyrins/chemistry , Spectrum Analysis, Raman/methods , Algorithms , Computer Simulation , Electrons , Heme/analogs & derivatives , Kinetics , Spectrophotometry , Vibration
10.
Appl Opt ; 45(3): 558-64, 2006 Jan 20.
Article in English | MEDLINE | ID: mdl-16463742

ABSTRACT

A tunable, ultrafast (approximately 100 fs-approximately 1 ps) laser system generating mid-IR (3-10 microm) and UV/visible (392-417 nm, 785-835 nm) radiation is described and its output characterized. The system is designed to explore vibrational dynamics in the condensed phase in a direct, two-pulse, time-resolved manner, using Raman spectroscopy as the probe. To produce vibrational resolution, probe pulses are spectrally narrowed by use of a long doubling crystal. Frequency-resolved optical gating is used to evaluate beam characteristics. An effective method for determining the temporal overlap of the pump and probe pulses for a one-color, 400 nm configuration is illustrated. Representative results from studies of heme and paranitroaniline vibrational dynamics illustrate the effectiveness of the visible pump-visible probe portion of the system in illuminating fast structure and energy dynamics.


Subject(s)
Biopolymers/analysis , Biopolymers/chemistry , Image Enhancement/instrumentation , Lasers , Spectrophotometry, Infrared/instrumentation , Spectrophotometry, Ultraviolet/instrumentation , Equipment Design , Equipment Failure Analysis , Spectrophotometry, Infrared/methods , Spectrophotometry, Ultraviolet/methods , Vibration
11.
Chemphyschem ; 6(6): 1157-63, 2005 Jun 13.
Article in English | MEDLINE | ID: mdl-15883968

ABSTRACT

para-Nitroaniline (PNA) plays an essential role as the prototype model of push-pull chromophores. The nature and degree of participation of vibrational degrees of freedom in the charge-transfer and internal-conversion processes are current issues of great theoretical and practical importance. Ultrafast time-resolved anti-Stokes resonance Raman spectroscopy (TRARRS) experiments on PNA in dimethyl sulfoxide with three different excitation wavelengths were performed to probe these dynamical influences. The vibrational dynamics associated with S0 were independent of incident wavelength, and this supports the picture that the S1 dynamics are fast relative to the rate of intersystem crossing. The phenyl breathing mode nu(19) (860 cm(-1)) and the symmetric NO2 stretch nu(29) (1310 cm(-1)) exhibited vibrational lifetimes in S0 of 8.1 and 5.2 ps, respectively. No evidence for inhomogeneous broadening of the charge-transfer band in the UV/Vis absorption spectrum was found.


Subject(s)
Aniline Compounds/chemistry , Spectrophotometry, Ultraviolet , Spectrum Analysis, Raman
SELECTION OF CITATIONS
SEARCH DETAIL
...