Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Diabetologia ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836934

ABSTRACT

AIMS/HYPOTHESIS: Older adults are under-represented in trials, meaning the benefits and risks of glucose-lowering agents in this age group are unclear. The aim of this study was to assess the safety and effectiveness of sodium-glucose cotransporter 2 inhibitors (SGLT2i) in people with type 2 diabetes aged over 70 years using causal analysis. METHODS: Hospital-linked UK primary care data (Clinical Practice Research Datalink, 2013-2020) were used to compare adverse events and effectiveness in individuals initiating SGLT2i compared with dipeptidyl peptidase-4 inhibitors (DPP4i). Analysis was age-stratified: <70 years (SGLT2i n=66,810, DPP4i n=76,172), ≥70 years (SGLT2i n=10,419, DPP4i n=33,434). Outcomes were assessed using the instrumental variable causal inference method and prescriber preference as the instrument. RESULTS: Risk of diabetic ketoacidosis was increased with SGLT2i in those aged ≥70 (incidence rate ratio compared with DPP4i: 3.82 [95% CI 1.12, 13.03]), but not in those aged <70 (1.12 [0.41, 3.04]). However, incidence rates with SGLT2i in those ≥70 was low (29.6 [29.5, 29.7]) per 10,000 person-years. SGLT2i were associated with similarly increased risk of genital infection in both age groups (incidence rate ratio in those <70: 2.27 [2.03, 2.53]; ≥70: 2.16 [1.77, 2.63]). There was no evidence of an increased risk of volume depletion, poor micturition control, urinary frequency, falls or amputation with SGLT2i in either age group. In those ≥70, HbA1c reduction was similar between SGLT2i and DPP4i (-0.3 mmol/mol [-1.6, 1.1], -0.02% [0.1, 0.1]), but in those <70, SGLT2i were more effective (-4 mmol/mol [4.8, -3.1], -0.4% [-0.4, -0.3]). CONCLUSIONS/INTERPRETATION: Causal analysis suggests SGLT2i are effective in adults aged ≥70 years, but increase risk for genital infections and diabetic ketoacidosis. Our study extends RCT evidence to older adults with type 2 diabetes.

2.
BMC Infect Dis ; 24(1): 568, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849730

ABSTRACT

BACKGROUND: Lower Respiratory Tract Infections (LRTI) pose a serious threat to older adults but may be underdiagnosed due to atypical presentations. Here we assess LRTI symptom profiles and syndromic (symptom-based) case ascertainment in older (≥ 65y) as compared to younger adults (< 65y). METHODS: We included adults (≥ 18y) with confirmed LRTI admitted to two acute care Trusts in Bristol, UK from 1st August 2020- 31st July 2022. Logistic regression was used to assess whether age ≥ 65y reduced the probability of meeting syndromic LRTI case definitions, using patients' symptoms at admission. We also calculated relative symptom frequencies (log-odds ratios) and evaluated how symptoms were clustered across different age groups. RESULTS: Of 17,620 clinically confirmed LRTI cases, 8,487 (48.1%) had symptoms meeting the case definition. Compared to those not meeting the definition these cases were younger, had less severe illness and were less likely to have received a SARS-CoV-2 vaccination or to have active SARS-CoV-2 infection. Prevalence of dementia/cognitive impairment and levels of comorbidity were lower in this group. After controlling for sex, dementia and comorbidities, age ≥ 65y significantly reduced the probability of meeting the case definition (aOR = 0.67, 95% CI:0.63-0.71). Cases aged ≥ 65y were less likely to present with fever and LRTI-specific symptoms (e.g., pleurisy, sputum) than younger cases, and those aged ≥ 85y were characterised by lack of cough but frequent confusion and falls. CONCLUSIONS: LRTI symptom profiles changed considerably with age in this hospitalised cohort. Standard screening protocols may fail to detect older and frailer cases of LRTI based on their symptoms.


Subject(s)
COVID-19 , Hospitalization , Respiratory Tract Infections , Humans , Aged , Male , Female , Middle Aged , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Respiratory Tract Infections/diagnosis , Hospitalization/statistics & numerical data , Adult , Aged, 80 and over , Age Factors , COVID-19/epidemiology , COVID-19/diagnosis , United Kingdom/epidemiology , SARS-CoV-2 , Young Adult , Comorbidity , Adolescent
3.
PLoS Comput Biol ; 20(4): e1012062, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38669293

ABSTRACT

Multiplex panel tests identify many individual pathogens at once, using a set of component tests. In some panels the number of components can be large. If the panel is detecting causative pathogens for a single syndrome or disease then we might estimate the burden of that disease by combining the results of the panel, for example determining the prevalence of pneumococcal pneumonia as caused by many individual pneumococcal serotypes. When we are dealing with multiplex test panels with many components, test error in the individual components of a panel, even when present at very low levels, can cause significant overall error. Uncertainty in the sensitivity and specificity of the individual tests, and statistical fluctuations in the numbers of false positives and false negatives, will cause large uncertainty in the combined estimates of disease prevalence. In many cases this can be a source of significant bias. In this paper we develop a mathematical framework to characterise this issue, we determine expressions for the sensitivity and specificity of panel tests. In this we identify a counter-intuitive relationship between panel test sensitivity and disease prevalence that means panel tests become more sensitive as prevalence increases. We present novel statistical methods that adjust for bias and quantify uncertainty in prevalence estimates from panel tests, and use simulations to test these methods. As multiplex testing becomes more commonly used for screening in routine clinical practice, accumulation of test error due to the combination of large numbers of test results needs to be identified and corrected for.


Subject(s)
Sensitivity and Specificity , Humans , Prevalence , Computer Simulation , Computational Biology/methods , Streptococcus pneumoniae , Models, Statistical , Pneumonia, Pneumococcal/epidemiology , Pneumonia, Pneumococcal/diagnosis
4.
BMJ Open ; 14(1): e078135, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38296292

ABSTRACT

OBJECTIVE: This study aimed to compare clinical and sociodemographic risk factors for severe COVID-19, influenza and pneumonia, in people with diabetes. DESIGN: Population-based cohort study. SETTING: UK primary care records (Clinical Practice Research Datalink) linked to mortality and hospital records. PARTICIPANTS: Individuals with type 1 and type 2 diabetes (COVID-19 cohort: n=43 033 type 1 diabetes and n=584 854 type 2 diabetes, influenza and pneumonia cohort: n=42 488 type 1 diabetes and n=585 289 type 2 diabetes). PRIMARY AND SECONDARY OUTCOME MEASURES: COVID-19 hospitalisation from 1 February 2020 to 31 October 2020 (pre-COVID-19 vaccination roll-out), and influenza and pneumonia hospitalisation from 1 September 2016 to 31 May 2019 (pre-COVID-19 pandemic). Secondary outcomes were COVID-19 and pneumonia mortality. Associations between clinical and sociodemographic risk factors and each outcome were assessed using multivariable Cox proportional hazards models. In people with type 2 diabetes, we explored modifying effects of glycated haemoglobin (HbA1c) and body mass index (BMI) by age, sex and ethnicity. RESULTS: In type 2 diabetes, poor glycaemic control and severe obesity were consistently associated with increased risk of hospitalisation for COVID-19, influenza and pneumonia. The highest HbA1c and BMI-associated relative risks were observed in people aged under 70 years. Sociodemographic-associated risk differed markedly by respiratory infection, particularly for ethnicity. Compared with people of white ethnicity, black and south Asian groups had a greater risk of COVID-19 hospitalisation, but a lesser risk of pneumonia hospitalisation. Risk factor associations for type 1 diabetes and for type 2 diabetes mortality were broadly consistent with the primary analysis. CONCLUSIONS: Clinical risk factors of high HbA1c and severe obesity are consistently associated with severe outcomes from COVID-19, influenza and pneumonia, especially in younger people. In contrast, associations with sociodemographic risk factors differed by type of respiratory infection. This emphasises that risk stratification should be specific to individual respiratory infections.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Influenza, Human , Obesity, Morbid , Pneumonia , Respiratory Tract Infections , Humans , Aged , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , COVID-19/epidemiology , Pandemics , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/epidemiology , Influenza, Human/epidemiology , Glycated Hemoglobin , Cohort Studies , COVID-19 Vaccines , Risk Factors , Pneumonia/epidemiology , Obesity/complications , Obesity/epidemiology , United Kingdom/epidemiology
5.
Br J Haematol ; 204(3): 826-838, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38009561

ABSTRACT

Despite significant global morbidity associated with respiratory infection, there is a paucity of data examining the association between severity of non-SARS-CoV-2 respiratory infection and blood group. We analysed a prospective cohort of adults hospitalised in Bristol, UK, from 1 August 2020 to 31 July 2022, including patients with acute respiratory infection (pneumonia [n = 1934] and non-pneumonic lower respiratory tract infection [NP-LRTI] [n = 1184]), a negative SARS-CoV-2 test and known blood group status. The likelihood of cardiovascular complication, survival and hospital admission length was assessed using regression models with group O and RhD-negative status as reference groups. Group A and RhD-positive were over-represented in both pneumonia and NP-LRTI compared to a first-time donor population (p < 0.05 in all); contrastingly, group O was under-represented. ABO group did not influence cardiovascular complication risk; however, RhD-positive patients with pneumonia had a reduced odds ratio (OR) for cardiovascular complications (OR = 0.77 [95% CI = 0.59-0.98]). Compared to group O, group A individuals with NP-LRTI were more likely to be discharged within 60 days (hazard ratio [HR] = 1.17 [95% CI = 1.03-1.33]), while group B with pneumonia was less likely (HR = 0.8 [95% CI = 0.66-0.96]). This analysis provides some evidence that blood group status may influence clinical outcome following respiratory infection, with group A having increased risk of hospitalisation and RhD-positive patients having reduced cardiovascular complications.


Subject(s)
COVID-19 , Pneumonia , Respiratory Tract Infections , Adult , Humans , SARS-CoV-2 , Prospective Studies , ABO Blood-Group System , United Kingdom
7.
J R Soc Med ; 116(11): 371-385, 2023 11.
Article in English | MEDLINE | ID: mdl-37404021

ABSTRACT

OBJECTIVES: To determine whether acute exacerbations of chronic obstructive pulmonary disease (AECOPD) triggered by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have worse outcomes than AECOPD caused by other infectious agents or non-infective AECOPD (NI-COPD). DESIGN: A two-hospital prospective cohort study of adults hospitalised with acute respiratory disease. We compared outcomes with AECOPD and a positive test for SARS-CoV-2 (n = 816), AECOPD triggered by other infections (n = 3038) and NI-COPD (n = 994). We used multivariable modelling to adjust for potential confounders and assessed variation by seasons associated with different SARS-CoV-2 variants. SETTING: Bristol UK, August 2020-May 2022. PARTICIPANTS: Adults (≥18 y) hospitalised with AECOPD. MAIN OUTCOME MEASURES: We determined the risk of positive pressure support, longer hospital admission and mortality following hospitalisation with AECOPD due to non-SARS-CoV-2 infection compared with SARS-CoV-2 AECOPD and NI-COPD. RESULTS: Patients with SARS-CoV-2 AECOPD, in comparison to non-SARS-CoV-2 infective AECOPD or NI-COPD, more frequently required positive pressure support (18.5% and 7.5% vs. 11.7%, respectively), longer hospital stays (median [interquartile range, IQR]: 7 [3-15] and 5 [2-10] vs. 4 [2-9] days, respectively) and had higher 30-day mortality (16.9% and 11.1% vs. 5.9%, respectively) (all p < 0.001). In adjusted analyses, SARS-CoV-2 AECOPD was associated with a 55% (95% confidence interval [95% CI]: 24-93), 26% (95% CI: 15-37) and 35% (95% CI: 10-65) increase in the risk of positive pressure support, hospitalisation length and 30-day mortality, respectively, relative to non-SARS-CoV-2 infective AECOPD. The difference in risk remained similar during periods of wild-type, Alpha and Delta SARS-CoV-2 strain dominance, but diminished during Omicron dominance. CONCLUSIONS: SARS-CoV-2-related AECOPD had worse patient outcomes compared with non-SARS-CoV-2 AECOPD or NI-AECOPD, although the difference in risks was less pronounced during Omicron dominance.


Subject(s)
COVID-19 , Pulmonary Disease, Chronic Obstructive , Humans , Adult , SARS-CoV-2 , Disease Progression , Prospective Studies , COVID-19/complications , Pulmonary Disease, Chronic Obstructive/complications
9.
BMJ Open Respir Res ; 10(1)2023 05.
Article in English | MEDLINE | ID: mdl-37147024

ABSTRACT

RATIONALE: Streptococcus pneumoniae epidemiology is changing in response to vaccination and some data suggest that empyema incidence is increasing. However, differences exist between the UK and US studies. We describe trends in the clinical phenotype of adult pneumococcal pleural infection, including simple parapneumonic effusions (SPE) in the pneumococcal conjugate vaccination (PCV) era. OBJECTIVES: To determine whether there were differences in pneumococcal disease presentation and severity associated with pleural infection. METHODS: A retrospective cohort study, all adults ≥16 years admitted to three large UK hospitals, 2006-2018 with pneumococcal disease. 2477 invasive pneumococcal cases were identified: 459 SPE and 100 pleural infection cases. Medical records were reviewed for each clinical episode. Serotype data were obtained from the UK Health Security Agency national reference laboratory. RESULTS: Incidence increased over time, including non-PCV-serotype disease. PCV7-serotype disease declined following paediatric PCV7 introduction, but the effect of PCV13 was less apparent as disease caused by the additional six serotypes plateaued with serotypes 1 and 3 causing such parapneumonic effusions from 2011 onwards.Patients with pleural infection had a median survival 468 days (95% CI 340 to 590) vs 286 days (95% CI 274 to 335) in those with SPE. Pleural infection associated with frank pus had lower 90-day mortality than pleural infection without pus (0% vs 29%, p<0.0001). 90-day mortality could be predicted by baseline increased RAPID (Renal, Age, Purulence, Infection source, and Dietary factors) score (HR 15.01, 95% CI 1.24 to 40.06, p=0.049). CONCLUSIONS: Pneumococcal infection continues to cause severe disease despite the introduction of PCVs. The predominance of serotype 1 and 3 in this adult UK cohort is in keeping with previous studies in paediatric and non-UK studies. Rising non-PCV serotype disease and limited impact of PCV13 on cases caused by serotypes 1 and 3 offset the reductions in adult pneumococcal parapneumonic effusion disease burden observed following the introduction of the childhood PCV7 programme.


Subject(s)
Pleural Effusion , Pneumococcal Infections , Humans , Streptococcus pneumoniae , Serogroup , Retrospective Studies , Pneumococcal Infections/epidemiology , Pneumococcal Infections/prevention & control , Pleural Effusion/epidemiology , Patient Acuity , Suppuration , Pneumococcal Vaccines
10.
Lancet Reg Health Eur ; 25: 100556, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36530491

ABSTRACT

Background: There is an urgent public health need to evaluate disease severity in adults hospitalised with Delta and Omicron SARS-CoV-2 variant infections. However, limited data exist assessing severity of disease in adults hospitalised with Omicron SARS-CoV-2 infections, and to what extent patient-factors, including vaccination, age, frailty and pre-existing disease, affect variant-dependent disease severity. Methods: A prospective cohort study of adults (≥18 years of age) hospitalised with acute lower respiratory tract disease at acute care hospitals in Bristol, UK conducted over 10-months. Delta or Omicron SARS-CoV-2 infection was defined by positive SARS-CoV-2 PCR and variant identification or inferred by dominant circulating variant. We constructed adjusted regression analyses to assess disease severity using three different measures: FiO2 >28% (fraction inspired oxygen), World Health Organization (WHO) outcome score >5 (assessing need for ventilatory support), and hospital length of stay (LOS) >3 days following admission for Omicron or Delta infection. Findings: Independent of other variables, including vaccination, Omicron variant infection in hospitalised adults was associated with lower severity than Delta. Risk reductions were 58%, 67%, and 16% for supplementary oxygen with >28% FiO2 [Relative Risk (RR) = 0.42 (95%CI: 0.34-0.52), P < 0.001], WHO outcome score >5 [RR = 0.33 (95%CI: 0.21-0.50), P < 0.001], and to have had a LOS > 3 days [RR = 0.84 (95%CI: 0.76-0.92), P < 0.001]. Younger age and vaccination with two or three doses were also independently associated with lower COVID-19 severity. Interpretation: We provide reassuring evidence that Omicron infection results in less serious adverse outcomes than Delta in hospitalised patients. Despite lower severity relative to Delta, Omicron infection still resulted in substantial patient and public health burden and an increased admission rate of older patients with Omicron which counteracts some of the benefit arising from less severe disease. Funding: AvonCAP is an investigator-led project funded under a collaborative agreement by Pfizer.

11.
Lancet Reg Health Eur ; 21: 100473, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35965672

ABSTRACT

Background: The emergence of COVID-19 and public health measures implemented to reduce SARS-CoV-2 infections have both affected acute lower respiratory tract disease (aLRTD) epidemiology and incidence trends. The severity of COVID-19 and non-SARS-CoV-2 aLRTD during this period have not been compared in detail. Methods: We conducted a prospective cohort study of adults age ≥18 years admitted to either of two acute care hospitals in Bristol, UK, from August 2020 to November 2021. Patients were included if they presented with signs or symptoms of aLRTD (e.g., cough, pleurisy), or a clinical or radiological aLRTD diagnosis. Findings: 12,557 adult aLRTD hospitalisations occurred: 10,087 were associated with infection (pneumonia or non-pneumonic lower respiratory tract infection [NP-LRTI]), 2161 with no infective cause, with 306 providing a minimal surveillance dataset. Confirmed SARS-CoV-2 infection accounted for 32% (3178/10,087) of respiratory infections. Annual incidences of overall, COVID-19, and non- SARS-CoV-2 pneumonia were 714.1, 264.2, and 449.9, and NP-LRTI were 346.2, 43.8, and 302.4 per 100,000 adults, respectively. Weekly incidence trends in COVID-19 aLRTD showed large surges (median 6.5 [IQR 0.7-10.2] admissions per 100,000 adults per week), while other infective aLRTD events were more stable (median 14.3 [IQR 12.8-16.4] admissions per 100,000 adults per week) as were non-infective aLRTD events (median 4.4 [IQR 3.5-5.5] admissions per 100,000 adults per week). Interpretation: While COVID-19 disease was a large component of total aLRTD during this pandemic period, non- SARS-CoV-2 infection still caused the majority of respiratory infection hospitalisations. COVID-19 disease showed significant temporal fluctuations in frequency, which were less apparent in non-SARS-CoV-2 infection. Despite public health interventions to reduce respiratory infection, disease incidence remains high. Funding: AvonCAP is an investigator-led project funded under a collaborative agreement by Pfizer.

12.
BMC Health Serv Res ; 22(1): 828, 2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35761225

ABSTRACT

BACKGROUND: Hospital catchment areas define the primary population of a hospital and are central to assessing the potential demand on that hospital, for example, due to infectious disease outbreaks. METHODS: We present a novel algorithm, based on label propagation, for estimating hospital catchment areas, from the capacity of the hospital and demographics of the nearby population, and without requiring any data on hospital activity. RESULTS: The algorithm is demonstrated to produce a mapping from fine grained geographic regions to larger scale catchment areas, providing contiguous and realistic subdivisions of geographies relating to a single hospital or to a group of hospitals. In validation against an alternative approach predicated on activity data gathered during the COVID-19 outbreak in the UK, the label propagation algorithm is found to have a high level of agreement and perform at a similar level of accuracy. RESULTS: The algorithm can be used to make estimates of hospital catchment areas in new situations where activity data is not yet available, such as in the early stages of a infections disease outbreak.


Subject(s)
COVID-19 , COVID-19/epidemiology , Catchment Area, Health , Delivery of Health Care , Disease Outbreaks/prevention & control , Hospitals , Humans
13.
Stat Methods Med Res ; 31(9): 1675-1685, 2022 09.
Article in English | MEDLINE | ID: mdl-34569883

ABSTRACT

Since the beginning of the COVID-19 pandemic, the reproduction number [Formula: see text] has become a popular epidemiological metric used to communicate the state of the epidemic. At its most basic, [Formula: see text] is defined as the average number of secondary infections caused by one primary infected individual. [Formula: see text] seems convenient, because the epidemic is expanding if [Formula: see text] and contracting if [Formula: see text]. The magnitude of [Formula: see text] indicates by how much transmission needs to be reduced to control the epidemic. Using [Formula: see text] in a naïve way can cause new problems. The reasons for this are threefold: (1) There is not just one definition of [Formula: see text] but many, and the precise definition of [Formula: see text] affects both its estimated value and how it should be interpreted. (2) Even with a particular clearly defined [Formula: see text], there may be different statistical methods used to estimate its value, and the choice of method will affect the estimate. (3) The availability and type of data used to estimate [Formula: see text] vary, and it is not always clear what data should be included in the estimation. In this review, we discuss when [Formula: see text] is useful, when it may be of use but needs to be interpreted with care, and when it may be an inappropriate indicator of the progress of the epidemic. We also argue that careful definition of [Formula: see text], and the data and methods used to estimate it, can make [Formula: see text] a more useful metric for future management of the epidemic.


Subject(s)
COVID-19 , Basic Reproduction Number , COVID-19/epidemiology , Forecasting , Humans , Pandemics/prevention & control , Reproduction
14.
Stat Methods Med Res ; 31(9): 1686-1703, 2022 09.
Article in English | MEDLINE | ID: mdl-34931917

ABSTRACT

The serial interval of an infectious disease, commonly interpreted as the time between the onset of symptoms in sequentially infected individuals within a chain of transmission, is a key epidemiological quantity involved in estimating the reproduction number. The serial interval is closely related to other key quantities, including the incubation period, the generation interval (the time between sequential infections), and time delays between infection and the observations associated with monitoring an outbreak such as confirmed cases, hospital admissions, and deaths. Estimates of these quantities are often based on small data sets from early contact tracing and are subject to considerable uncertainty, which is especially true for early coronavirus disease 2019 data. In this paper, we estimate these key quantities in the context of coronavirus disease 2019 for the UK, including a meta-analysis of early estimates of the serial interval. We estimate distributions for the serial interval with a mean of 5.9 (95% CI 5.2; 6.7) and SD 4.1 (95% CI 3.8; 4.7) days (empirical distribution), the generation interval with a mean of 4.9 (95% CI 4.2; 5.5) and SD 2.0 (95% CI 0.5; 3.2) days (fitted gamma distribution), and the incubation period with a mean 5.2 (95% CI 4.9; 5.5) and SD 5.5 (95% CI 5.1; 5.9) days (fitted log-normal distribution). We quantify the impact of the uncertainty surrounding the serial interval, generation interval, incubation period, and time delays, on the subsequent estimation of the reproduction number, when pragmatic and more formal approaches are taken. These estimates place empirical bounds on the estimates of most relevant model parameters and are expected to contribute to modeling coronavirus disease 2019 transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Disease Outbreaks , Humans , Reproduction , Uncertainty
15.
Philos Trans R Soc Lond B Biol Sci ; 376(1829): 20200280, 2021 07 19.
Article in English | MEDLINE | ID: mdl-34053251

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reproduction number has become an essential parameter for monitoring disease transmission across settings and guiding interventions. The UK published weekly estimates of the reproduction number in the UK starting in May 2020 which are formed from multiple independent estimates. In this paper, we describe methods used to estimate the time-varying SARS-CoV-2 reproduction number for the UK. We used multiple data sources and estimated a serial interval distribution from published studies. We describe regional variability and how estimates evolved during the early phases of the outbreak, until the relaxing of social distancing measures began to be introduced in early July. Our analysis is able to guide localized control and provides a longitudinal example of applying these methods over long timescales. This article is part of the theme issue 'Modelling that shaped the early COVID-19 pandemic response in the UK'.


Subject(s)
COVID-19/epidemiology , Models, Theoretical , Pandemics , SARS-CoV-2 , Basic Reproduction Number/statistics & numerical data , COVID-19/transmission , COVID-19/virology , Contact Tracing , Disease Outbreaks , Humans , Physical Distancing , United Kingdom/epidemiology
16.
PLoS One ; 16(4): e0251222, 2021.
Article in English | MEDLINE | ID: mdl-33914845

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0241027.].

17.
BMJ ; 372: n579, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33687922

ABSTRACT

OBJECTIVE: To establish whether there is any change in mortality from infection with a new variant of SARS-CoV-2, designated a variant of concern (VOC-202012/1) in December 2020, compared with circulating SARS-CoV-2 variants. DESIGN: Matched cohort study. SETTING: Community based (pillar 2) covid-19 testing centres in the UK using the TaqPath assay (a proxy measure of VOC-202012/1 infection). PARTICIPANTS: 54 906 matched pairs of participants who tested positive for SARS-CoV-2 in pillar 2 between 1 October 2020 and 29 January 2021, followed-up until 12 February 2021. Participants were matched on age, sex, ethnicity, index of multiple deprivation, lower tier local authority region, and sample date of positive specimens, and differed only by detectability of the spike protein gene using the TaqPath assay. MAIN OUTCOME MEASURE: Death within 28 days of the first positive SARS-CoV-2 test result. RESULTS: The mortality hazard ratio associated with infection with VOC-202012/1 compared with infection with previously circulating variants was 1.64 (95% confidence interval 1.32 to 2.04) in patients who tested positive for covid-19 in the community. In this comparatively low risk group, this represents an increase in deaths from 2.5 to 4.1 per 1000 detected cases. CONCLUSIONS: The probability that the risk of mortality is increased by infection with VOC-202012/01 is high. If this finding is generalisable to other populations, infection with VOC-202012/1 has the potential to cause substantial additional mortality compared with previously circulating variants. Healthcare capacity planning and national and international control policies are all impacted by this finding, with increased mortality lending weight to the argument that further coordinated and stringent measures are justified to reduce deaths from SARS-CoV-2.


Subject(s)
COVID-19 Testing/statistics & numerical data , COVID-19/mortality , COVID-19/virology , SARS-CoV-2/genetics , Adult , Aged , Aged, 80 and over , Cohort Studies , Female , Humans , Male , Middle Aged , Proportional Hazards Models , Risk Factors , United Kingdom/epidemiology
18.
PLoS One ; 15(10): e0241027, 2020.
Article in English | MEDLINE | ID: mdl-33085729

ABSTRACT

As the number of cases of COVID-19 continues to grow, local health services are at risk of being overwhelmed with patients requiring intensive care. We develop and implement an algorithm to provide optimal re-routing strategies to either transfer patients requiring Intensive Care Units (ICU) or ventilators, constrained by feasibility of transfer. We validate our approach with realistic data from the United Kingdom and Spain. In the UK, we consider the National Health Service at the level of trusts and define a 4-regular geometric graph which indicates the four nearest neighbours of any given trust. In Spain we coarse-grain the healthcare system at the level of autonomous communities, and extract similar contact networks. Through random search optimisation we identify the best load sharing strategy, where the cost function to minimise is based on the total number of ICU units above capacity. Our framework is general and flexible allowing for additional criteria, alternative cost functions, and can be extended to other resources beyond ICU units or ventilators. Assuming a uniform ICU demand, we show that it is possible to enable access to ICU for up to 1000 additional cases in the UK in a single step of the algorithm. Under a more realistic and heterogeneous demand, our method is able to balance about 600 beds per step in the Spanish system only using local sharing, and over 1300 using countrywide sharing, potentially saving a large percentage of these lives that would otherwise not have access to ICU.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Coronavirus Infections/therapy , Health Resources/supply & distribution , Models, Theoretical , Pneumonia, Viral/epidemiology , Pneumonia, Viral/therapy , Algorithms , COVID-19 , Coronavirus Infections/virology , Critical Care , Hospital Bed Capacity , Humans , Intensive Care Units/supply & distribution , Pandemics , Patient Transfer , Pneumonia, Viral/virology , SARS-CoV-2 , Spain/epidemiology , United Kingdom/epidemiology , Ventilators, Mechanical/supply & distribution
19.
JAMIA Open ; 3(2): 290-298, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32734170

ABSTRACT

BACKGROUND: Delay or failure to view test results in a hospital setting can lead to delayed diagnosis, risk of patient harm, and represents inefficiency. Factors influencing this were investigated to identify how timeliness and completeness of test review could be improved through an evidence-based redesign of the use of clinical test review software. METHODS: A cross-section of all abnormal hematology and biochemistry results which were published on a digital test review platform over a 3-year period were investigated. The time it took for clinicians to view these results, and the results that were not viewed within 30 days, were analyzed relative to time of the week, the detailed type of test, and an indicator of patient record data quality. RESULTS: The majority of results were viewed within 90 min, and 93.9% of these results viewed on the digital platform within 30 days. There was significant variation in results review throughout the week, shown to be due to an interplay between technical and clinical workflow factors. Routine results were less likely to be reviewed, as were those with patient record data quality issues. CONCLUSION: The evidence suggests that test result review would be improved by stream-lining access to the result platform, differentiating between urgent and routine results, improving handover of responsibility for result review, and improving search for temporary patient records. Altering the timing of phlebotomy rounds and a review of the appropriateness of routine test requests at the weekend may also improve result review rates.

SELECTION OF CITATIONS
SEARCH DETAIL
...