Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Funct Plant Biol ; 36(12): 1110-1119, 2010 Jan.
Article in English | MEDLINE | ID: mdl-32688722

ABSTRACT

Wheat breeding for salinity tolerance has traditionally focussed on Na+ exclusion from the shoot, but its association with salinity tolerance remains tenuous. Accordingly, the physiological significance of shoot Na+ exclusion and maintenance of an optimal K+ : Na+ ratio was re-evaluated by studying NaCl-induced responses in 50 genotypes of bread wheat (Triticum aestivum L.) and durum wheat (Triticum turgidum L. ssp. durum) treated with 150 mM NaCl. Overall, Na+ exclusion from the shoot correlated with salinity tolerance in both species and this exclusion was more efficient in bread compared with durum wheat. Interestingly, shoot sap K+ increased significantly in nearly all durum and bread wheat genotypes. Conversely, the total shoot K+ content declined. We argue that this increase in shoot sap K+ is needed to provide efficient osmotic adjustment under saline conditions. Durum wheat was able to completely adjust shoot sap osmolality using K+, Na+ and Cl-; it had intrinsically higher levels of these solutes. In bread wheat, organic osmolytes must contribute ~13% of the total shoot osmolality. In contrast to barley (Hordeum vulgare L.), NaCl-induced K+ efflux from seedling roots did not predict salinity tolerance in wheat, implying that shoot, not root K+ retention is important in this species.

2.
J Exp Bot ; 59(10): 2697-706, 2008.
Article in English | MEDLINE | ID: mdl-18495637

ABSTRACT

Most work on wheat breeding for salt tolerance has focused mainly on excluding Na(+) from uptake and transport to the shoot. However, some recent findings have reported no apparent correlation between leaf Na(+) content and wheat salt tolerance. Thus, it appears that excluding Na(+) by itself is not always sufficient to increase plant salt tolerance and other physiological traits should also be considered. In this work, it was investigated whether a root's ability to retain K(+) may be such a trait, and whether our previous findings for barley can be extrapolated to species following a 'salt exclusion' strategy. NaCl-induced kinetics of K(+) flux from roots of two bread and two durum wheat genotypes, contrasting in their salt tolerance, were measured under laboratory conditions using non-invasive ion flux measuring (the MIFE) technique. These measurements were compared with whole-plant physiological characteristics and yield responses from plants grown under greenhouse conditions. The results show that K(+) flux from the root surface of 6-d-old wheat seedlings in response to salt treatment was highly correlated with major plant physiological characteristics and yield of greenhouse-grown plants. This emphasizes the critical role of K(+) homeostasis in plant salt tolerance and suggests that using NaCl-induced K(+) flux measurements as a physiological 'marker' for salt tolerance may benefit wheat-breeding programmes.


Subject(s)
Plant Roots/physiology , Potassium/metabolism , Sodium Chloride/metabolism , Triticum/physiology , Biomass , Cell Membrane/physiology , Phenotype , Plant Roots/genetics , Triticum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...