Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
J Proteomics ; 302: 105198, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38777089

ABSTRACT

Understanding microglial states in the aging brain has become crucial, especially with the discovery of numerous Alzheimer's disease (AD) risk and protective variants in genes such as INPP5D and TREM2, which are essential to microglia function in AD. Here we present a thorough examination of microglia-like cells and primary mouse microglia at the proteome and transcriptome levels to illuminate the roles these genes and the proteins they encode play in various cell states. First, we compared the proteome profiles of wildtype and INPP5D (SHIP1) knockout primary microglia. Our findings revealed significant proteome alterations only in the homozygous SHIP1 knockout, revealing its impact on the microglial proteome. Additionally, we compared the proteome and transcriptome profiles of commonly used in vitro microglia BV2 and HMC3 cells with primary mouse microglia. Our results demonstrated a substantial similarity between the proteome of BV2 and mouse primary cells, while notable differences were observed between BV2 and human HMC3. Lastly, we conducted targeted lipidomic analysis to quantify different phosphatidylinositols (PIs) species, which are direct SHIP1 targets, in the HMC3 and BV2 cells. This in-depth omics analysis of both mouse and human microglia enhances our systematic understanding of these microglia models. SIGNIFICANCE: Given the growing urgency of comprehending microglial function in the context of neurodegenerative diseases and the substantial therapeutic implications associated with SHIP1 modulation, we firmly believe that our study, through a rigorous and comprehensive proteomics, transcriptomics and targeted lipidomic analysis of microglia, contributes to the systematic understanding of microglial function in the context of neurodegenerative diseases.


Subject(s)
Alzheimer Disease , Microglia , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases , Proteome , Microglia/metabolism , Animals , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolism , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/genetics , Mice , Proteome/metabolism , Proteome/analysis , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Mice, Knockout , Transcriptome , Phosphatidylinositols/metabolism , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Proteomics/methods
2.
J Am Soc Mass Spectrom ; 30(12): 2580-2583, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31724102

ABSTRACT

Hydrogen/deuterium exchange mass spectrometry (HDX-MS) is a biophysical technique well suited to the characterization of protein dynamics and protein-ligand interactions. In order to accurately define the rate of exchange, HDX experiments require the repeated measure of deuterium incorporation into the target protein across a range of time points. Accordingly, the HDX-MS experiment is well suited to automation, and a number of automated systems for HDX-MS have been developed. The most widely utilized platforms all operate an integrated design, where robotic liquid handling is interfaced directly with a mass spectrometer. With integrated designs, the exchange samples are prepared and injected into the LC-MS following a "real-time" serial workflow. Here we describe a new HDX-MS platform that is comprised of two complementary pieces of automation that disconnect the sample preparation from the LC-MS analysis. For preparation, a plate-based automation system is used to prepare samples in parallel, followed by immediate freezing and storage. A second piece of automation has been constructed to perform the thawing and LC-MS analysis of frozen samples in a serial mode and has been optimized to maximize the duty cycle of the mass spectrometer. The decoupled configuration described here reduces experiment time, significantly improves capacity, and improves the flexibility of the platform when compared with a fully integrated system.


Subject(s)
Hydrogen Deuterium Exchange-Mass Spectrometry/methods , Drug Discovery/economics , Drug Discovery/instrumentation , Drug Discovery/methods , Equipment Design , Flow Injection Analysis/economics , Flow Injection Analysis/instrumentation , Flow Injection Analysis/methods , Humans , Hydrogen Deuterium Exchange-Mass Spectrometry/economics , Hydrogen Deuterium Exchange-Mass Spectrometry/instrumentation , Ligands , Proteins/chemistry
3.
Anal Chem ; 91(11): 7336-7345, 2019 06 04.
Article in English | MEDLINE | ID: mdl-31045344

ABSTRACT

Hydrogen-deuterium exchange mass spectrometry (HDX-MS) is an established, powerful tool for investigating protein-ligand interactions, protein folding, and protein dynamics. However, HDX-MS is still an emergent tool for quality control of biopharmaceuticals and for establishing dynamic similarity between a biosimilar and an innovator therapeutic. Because industry will conduct quality control and similarity measurements over a product lifetime and in multiple locations, an understanding of HDX-MS reproducibility is critical. To determine the reproducibility of continuous-labeling, bottom-up HDX-MS measurements, the present interlaboratory comparison project evaluated deuterium uptake data from the Fab fragment of NISTmAb reference material (PDB: 5K8A ) from 15 laboratories. Laboratories reported ∼89 800 centroid measurements for 430 proteolytic peptide sequences of the Fab fragment (∼78 900 centroids), giving ∼100% coverage, and ∼10 900 centroid measurements for 77 peptide sequences of the Fc fragment. Nearly half of peptide sequences are unique to the reporting laboratory, and only two sequences are reported by all laboratories. The majority of the laboratories (87%) exhibited centroid mass laboratory repeatability precisions of ⟨ sLab⟩ ≤ (0.15 ± 0.01) Da (1σx̅). All laboratories achieved ⟨sLab⟩ ≤ 0.4 Da. For immersions of protein at THDX = (3.6 to 25) °C and for D2O exchange times of tHDX = (30 s to 4 h) the reproducibility of back-exchange corrected, deuterium uptake measurements for the 15 laboratories is σreproducibility15 Laboratories( tHDX) = (9.0 ± 0.9) % (1σ). A nine laboratory cohort that immersed samples at THDX = 25 °C exhibited reproducibility of σreproducibility25C cohort( tHDX) = (6.5 ± 0.6) % for back-exchange corrected, deuterium uptake measurements.


Subject(s)
Antibodies, Monoclonal/chemistry , Hydrogen Deuterium Exchange-Mass Spectrometry , Immunoglobulin Fab Fragments/analysis
5.
ACS Med Chem Lett ; 9(9): 912-916, 2018 Sep 13.
Article in English | MEDLINE | ID: mdl-30258540

ABSTRACT

Molecular characterization of the binding epitope of IL-23R and its cognate cytokine IL-23 is paramount to understand the role in autoimmune diseases and to support the discovery of new inhibitors of this protein-protein interaction. Our results revealed that HDX-MS was able to identify the binding epitope of IL-23R:IL-23, which opened the way to evaluate a peptide macrocycle described in the literature as disrupter of this autoimmune target. Thus, the characterization of the interactions of this chemotype by HDX-MS in combination with computational approaches was achieved. To our knowledge, this is the first reported structural evidence regarding the site where a small compound binds to IL-23R.

6.
ACS Med Chem Lett ; 9(6): 557-562, 2018 Jun 14.
Article in English | MEDLINE | ID: mdl-29937982

ABSTRACT

The KRASG12C protein product is an attractive, yet challenging, target for small molecule inhibition. One option for therapeutic intervention is to design small molecule ligands capable of binding to and inactivating KRASG12C via formation of a covalent bond to the sulfhydryl group of cysteine 12. In order to better understand the cellular off-target interactions of Compound 1, a covalent KRASG12C inhibitor, we have completed a series of complementary chemical proteomics experiments in H358 cells. A new thiol reactive probe (TRP) was designed and used to construct a cellular target occupancy assay for KRASG12C. In addition, the thiol reactive probes allowed us to profile potential off-target interactions of Compound 1 with over 3200 cysteine residues. In order to complement the TRP data we designed Compound 2, an alkyne containing version of Compound 1, to serve as bait in competitive chemical proteomics experiments. Herein, we describe and compare data from both the TRP and the click chemistry probe pull down experiments.

7.
PLoS One ; 13(1): e0190850, 2018.
Article in English | MEDLINE | ID: mdl-29329326

ABSTRACT

To date, IL-17A antibodies remain the only therapeutic approach to correct the abnormal activation of the IL-17A/IL-17R signaling complex. Why is it that despite the remarkable success of IL-17 antibodies, there is no small molecule antagonist of IL-17A in the clinic? Here we offer a unique approach to address this question. In order to understand the interaction of IL-17A with its receptor, we combined peptide discovery using phage display with HDX, crystallography, and functional assays to map and characterize hot regions that contribute to most of the energetics of the IL-17A/IL-17R interaction. These functional maps are proposed to serve as a guide to aid in the development of small molecules that bind to IL-17A and block its interaction with IL-17RA.


Subject(s)
Coliphages/metabolism , Interleukin-17/metabolism , Peptides/metabolism , Receptors, Interleukin-17/metabolism , Crystallography, X-Ray , Enzyme-Linked Immunosorbent Assay , HT29 Cells , Humans , Interleukin-17/chemistry , Models, Molecular , Receptors, Interleukin-17/chemistry , Surface Plasmon Resonance
8.
Nat Commun ; 8(1): 923, 2017 10 13.
Article in English | MEDLINE | ID: mdl-29030554

ABSTRACT

The vitamin D receptor/retinoid X receptor-α heterodimer (VDRRXRα) regulates bone mineralization via transcriptional control of osteocalcin (BGLAP) gene and is the receptor for 1α,25-dihydroxyvitamin D3 (1,25D3). However, supra-physiological levels of 1,25D3 activates the calcium-regulating gene TRPV6 leading to hypercalcemia. An approach to attenuate this adverse effect is to develop selective VDR modulators (VDRMs) that differentially activate BGLAP but not TRPV6. Here we present structural insight for the action of a VDRM compared with agonists by employing hydrogen/deuterium exchange. Agonist binding directs crosstalk between co-receptors upon DNA binding, stabilizing the activation function 2 (AF2) surfaces of both receptors driving steroid receptor co-activator-1 (SRC1) interaction. In contrast, AF2 of VDR within VDRM:BGLAP bound heterodimer is more vulnerable for large stabilization upon SRC1 interaction compared with VDRM:TRPV6 bound heterodimer. These results reveal that the combination of ligand structure and DNA sequence tailor the transcriptional activity of VDR toward specific target genes.The vitamin D receptor/retinoid X receptor-α heterodimer (VDRRXRα) regulates bone mineralization. Here the authors employ hydrogen/deuterium exchange (HDX) mass spectrometry to study the conformational dynamics of VDRRXRα and give mechanistic insights into how VDRRXRα controls the transcriptional activity of specific genes.


Subject(s)
DNA/chemistry , Receptors, Calcitriol/chemistry , Receptors, Calcitriol/metabolism , DNA/genetics , DNA/metabolism , Deuterium Exchange Measurement , Dimerization , Humans , Hydrogen , Ligands , Mass Spectrometry , Osteocalcin/genetics , Osteocalcin/metabolism , Protein Binding , Receptors, Calcitriol/genetics , Retinoid X Receptors/chemistry , Retinoid X Receptors/genetics , Retinoid X Receptors/metabolism , Vitamin D/analogs & derivatives , Vitamin D/metabolism
9.
J Phys Chem B ; 121(15): 3493-3501, 2017 04 20.
Article in English | MEDLINE | ID: mdl-27807976

ABSTRACT

Characterization of interactions between proteins and other molecules is crucial for understanding the mechanisms of action of biological systems and, thus, drug discovery. An increasingly useful approach to mapping these interactions is measurement of hydrogen/deuterium exchange (HDX) using mass spectrometry (HDX-MS), which measures the time-resolved deuterium incorporation of peptides obtained by enzymatic digestion of the protein. Comparison of exchange rates between apo- and ligand-bound conditions results in a mapping of the differential HDX (ΔHDX) of the ligand. Residue-level analysis of these data, however, must account for experimental error, sparseness, and ambiguity due to overlapping peptides. Here, we propose a Bayesian method consisting of a forward model, noise model, prior probabilities, and a Monte Carlo sampling scheme. This method exploits a residue-resolved exponential rate model of HDX-MS data obtained from all peptides simultaneously, and explicitly models experimental error. The result is the best possible estimate of ΔHDX magnitude and significance for each residue given the data. We demonstrate the method by revealing richer structural interpretation of ΔHDX data on two nuclear receptors: vitamin D-receptor (VDR) and retinoic acid receptor gamma (RORγ). The method is implemented in HDX Workbench and as a standalone module of the open source Integrative Modeling Platform.


Subject(s)
Deuterium Exchange Measurement , Mass Spectrometry , Proteins/chemistry , Bayes Theorem , Ligands , Molecular Dynamics Simulation , Monte Carlo Method
10.
J Proteome Res ; 16(1): 355-365, 2017 01 06.
Article in English | MEDLINE | ID: mdl-27700100

ABSTRACT

Proteolysis of autoantigens can alter normal MHC class II antigen processing and has been implicated in the induction of autoimmune diseases. Many autoantigens are substrates for the protease granzyme B (GrB), but the mechanistic significance of this association is unknown. Peptidylarginine deiminase 4 (PAD4) is a frequent target of autoantibodies in patients with rheumatoid arthritis (RA) and a substrate for GrB. RA is strongly associated with specific MHC class II alleles, and elevated levels of GrB and PAD4 are found in the joints of RA patients, suggesting that GrB may alter the presentation of PAD4 by RA-associated class II alleles. In this study, complementary proteomic and immunologic approaches were utilized to define the effects of GrB cleavage on the structure, processing, and immunogenicity of PAD4. Hydrogen-deuterium exchange and a cell-free MHC class II antigen processing system revealed that proteolysis of PAD4 by GrB induced discrete structural changes in PAD4 that promoted enhanced presentation of several immunogenic peptides capable of stimulating PAD4-specific CD4+ T cells from patients with RA. This work demonstrates the existence of PAD4-specific T cells in patients with RA and supports a mechanistic role for GrB in enhancing the presentation of autoantigenic CD4+ T cell epitopes.


Subject(s)
Arthritis, Rheumatoid/immunology , Autoantigens/immunology , CD4-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , Granzymes/immunology , Hydrolases/immunology , Aged , Amino Acid Sequence , Antigen Presentation , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/pathology , Autoantibodies/biosynthesis , Autoantigens/chemistry , Autoantigens/genetics , Binding Sites , CD4-Positive T-Lymphocytes/pathology , Case-Control Studies , Deuterium Exchange Measurement , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Female , Gene Expression , Granzymes/chemistry , Granzymes/genetics , Humans , Hydrolases/chemistry , Hydrolases/genetics , Male , Middle Aged , Models, Molecular , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein-Arginine Deiminase Type 4 , Protein-Arginine Deiminases , Proteolysis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Substrate Specificity
12.
Anal Chem ; 88(12): 6607-14, 2016 06 21.
Article in English | MEDLINE | ID: mdl-27224086

ABSTRACT

Hydrogen/deuterium exchange coupled with mass spectrometry (HDX-MS) is an information-rich biophysical method for the characterization of protein dynamics. Successful applications of differential HDX-MS include the characterization of protein-ligand binding. A single differential HDX-MS data set (protein ± ligand) is often comprised of more than 40 individual HDX-MS experiments. To eliminate laborious manual processing of samples, and to minimize random and gross errors, automated systems for HDX-MS analysis have become routine in many laboratories. However, an automated system, while less prone to random errors introduced by human operators, may have systematic errors that go unnoticed without proper detection. Although the application of automated (and manual) HDX-MS has become common, there are only a handful of studies reporting the systematic evaluation of the performance of HDX-MS experiments, and no reports have been published describing a cross-site comparison of HDX-MS experiments. Here, we describe an automated HDX-MS platform that operates with a parallel, two-trap, two-column configuration that has been installed in two remote laboratories. To understand the performance of the system both within and between laboratories, we have designed and completed a test-retest repeatability study for differential HDX-MS experiments implemented at each of two laboratories, one in Florida and the other in Spain. This study provided sufficient data to do both within and between laboratory variability assessments. Initial results revealed a systematic run-order effect within one of the two systems. Therefore, the study was repeated, and this time the conclusion was that the experimental conditions were successfully replicated with minimal systematic error.


Subject(s)
Deuterium Exchange Measurement/methods , Mass Spectrometry/methods , Analysis of Variance , Chromatography, High Pressure Liquid/instrumentation , Chromatography, High Pressure Liquid/methods , Deuterium/analysis , Deuterium Exchange Measurement/instrumentation , Hydrogen/analysis , Ligands , Mass Spectrometry/instrumentation , Peptides/analysis , Proteins/chemistry , Receptors, Calcitriol/chemistry , Reproducibility of Results
13.
J Med Chem ; 59(5): 2255-60, 2016 Mar 10.
Article in English | MEDLINE | ID: mdl-26854023

ABSTRACT

Computational assessment of the IL-17A structure identified two distinct binding pockets, the ß-hairpin pocket and the α-helix pocket. The ß-hairpin pocket was hypothesized to be the site of binding for peptide macrocycles. Support for this hypothesis was obtained using HDX-MS which revealed protection to exchange only within the ß-hairpin pocket. This data represents the first direct structural evidence of a small molecule binding site on IL-17A that functions to disrupt the interaction with its receptor.


Subject(s)
Deuterium Exchange Measurement , Interleukin-17/antagonists & inhibitors , Macrocyclic Compounds/pharmacology , Mass Spectrometry , Peptides, Cyclic/pharmacology , Binding Sites/drug effects , Dose-Response Relationship, Drug , Humans , Interleukin-17/metabolism , Macrocyclic Compounds/chemical synthesis , Macrocyclic Compounds/chemistry , Models, Molecular , Molecular Conformation , Peptides, Cyclic/chemical synthesis , Peptides, Cyclic/chemistry , Structure-Activity Relationship
14.
Bioorg Med Chem ; 24(4): 759-67, 2016 02 15.
Article in English | MEDLINE | ID: mdl-26795112

ABSTRACT

Raloxifene, a selective estrogen receptor modulator (SERM), reduces fracture risk at least in part by improving the mechanical properties of bone in a cell- and estrogen receptor-independent manner. In this study, we determined that raloxifene directly interacts with the bone tissue. Through the use of multiple and complementary biophysical techniques including nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR), we show that raloxifene interacts specifically with the organic component or the organic/mineral composite, and not with hydroxyapatite. Structure-activity studies reveal that the basic side chain of raloxifene is an instrumental determinant in the interaction with bone. Thus, truncation of portions of the side chain reduces bone binding and also diminishes the increase in mechanical properties. Our results support a model wherein the piperidine interacts with bone matrix through electrostatic interactions with the piperidine nitrogen and through hydrophobic interactions (van der Waals) with the aliphatic groups in the side chain and the benzothiophene core. Furthermore, in silico prediction of the potential binding sites on the surface of collagen revealed the presence of a groove with sufficient space to accommodate raloxifene analogs. The hydroxyl groups on the benzothiophene nucleus, which are necessary for binding of SERMs to the estrogen receptor, are not required for binding to the bone surface, but mediate a more robust binding of the compound to the bone powder. In conclusion, we report herein a novel property of raloxifene analogs that allows them to interact with the bone tissue through potential contacts with the organic matrix and in particular collagen.


Subject(s)
Bone Matrix/drug effects , Collagen/metabolism , Femur/drug effects , Raloxifene Hydrochloride/pharmacology , Animals , Bone Matrix/metabolism , Collagen/chemistry , Dogs , Durapatite/chemistry , Femur/metabolism , Hydrophobic and Hydrophilic Interactions , Male , Piperidines/chemistry , Polylysine/chemistry , Polylysine/metabolism , Protein Binding , Raloxifene Hydrochloride/metabolism , Receptors, Estrogen/metabolism , Static Electricity , Structure-Activity Relationship , Thiophenes/chemistry
15.
Nat Commun ; 6: 8013, 2015 Aug 20.
Article in English | MEDLINE | ID: mdl-26289479

ABSTRACT

A subset of nuclear receptors (NRs) function as obligate heterodimers with retinoid X receptor (RXR), allowing integration of ligand-dependent signals across the dimer interface via an unknown structural mechanism. Using nuclear magnetic resonance (NMR) spectroscopy, x-ray crystallography and hydrogen/deuterium exchange (HDX) mass spectrometry, here we show an allosteric mechanism through which RXR co-operates with a permissive dimer partner, peroxisome proliferator-activated receptor (PPAR)-γ, while rendered generally unresponsive by a non-permissive dimer partner, thyroid hormone (TR) receptor. Amino acid residues that mediate this allosteric mechanism comprise an evolutionarily conserved network discovered by statistical coupling analysis (SCA). This SCA network acts as a signalling rheostat to integrate signals between dimer partners, ligands and coregulator-binding sites, thereby affecting signal transmission in RXR heterodimers. These findings define rules guiding how NRs integrate two ligand-dependent signalling pathways into RXR heterodimer-specific responses.


Subject(s)
Retinoid X Receptor alpha/metabolism , Signal Transduction/physiology , Animals , Cell Line , Cloning, Molecular , Crystallography, X-Ray , Gene Expression Regulation/physiology , Humans , Magnetic Resonance Spectroscopy , Models, Molecular , PPAR gamma/genetics , PPAR gamma/metabolism , Protein Conformation , Receptors, Thyroid Hormone/genetics , Receptors, Thyroid Hormone/metabolism , Retinoid X Receptor alpha/genetics
16.
Proc Natl Acad Sci U S A ; 111(45): 16154-9, 2014 Nov 11.
Article in English | MEDLINE | ID: mdl-25352669

ABSTRACT

Little is known regarding the identity of the population of proteins that are transported and localized to synapses. Here we describe a new approach that involves the isolation and systematic proteomic characterization of molecular motor kinesins to identify the populations of proteins transported to synapses. We used this approach to identify and compare proteins transported to synapses by kinesin (Kif) complexes Kif5C and Kif3A in the mouse hippocampus and prefrontal cortex. Approximately 40-50% of the protein cargos identified in our proteomics analysis of kinesin complexes are known synaptic proteins. We also found that the identity of kinesins and where they are expressed determine what proteins they transport. Our results reveal a previously unappreciated role of kinesins in regulating the composition of synaptic proteome.


Subject(s)
Hippocampus/metabolism , Kinesins/metabolism , Prefrontal Cortex/metabolism , Proteome/metabolism , Proteomics/methods , Synapses/metabolism , Animals , Mice
17.
Bioorg Med Chem Lett ; 24(15): 3459-63, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24974344

ABSTRACT

Modulation of the vitamin D receptor (VDR) with a ligand has the potential to be useful for the oral treatment of osteoporosis. One component of our lead generation strategy to identify synthetic ligands for VDR included a fragment based drug design approach. Screening of ligands in a VDR fluorescence polarization assay and a RXR/VDR conformation sensing assay resulted in the identification of multiple fragment hits (lean >0.30). These fragment scaffolds were subsequently evaluated for interaction with the VDR ligand binding domain using hydrogen-deuterium exchange (HDX) mass spectrometry. Significant protection of H/D exchange was observed for some fragments in helixes 3, 7, and 8 of the ligand binding domain, regions which are similar to those seen for the natural hormone VD3. The fragments appear to mimic the A-ring of VD3 thereby providing viable starting points for synthetic expansion.


Subject(s)
Deuterium Exchange Measurement , Organic Chemicals/pharmacology , Receptors, Calcitriol/metabolism , Dose-Response Relationship, Drug , Drug Design , Ligands , Mass Spectrometry , Models, Molecular , Molecular Structure , Organic Chemicals/chemistry , Structure-Activity Relationship
18.
Structure ; 22(4): 602-11, 2014 Apr 08.
Article in English | MEDLINE | ID: mdl-24560804

ABSTRACT

Soluble guanylate cyclase (sGC) is the primary mediator of nitric oxide (NO) signaling. NO binds the sGC heme cofactor stimulating synthesis of the second messenger cyclic-GMP (cGMP). As the central hub of NO/cGMP signaling pathways, sGC is important in diverse physiological processes such as vasodilation and neurotransmission. Nevertheless, the mechanisms underlying NO-induced cyclase activation in sGC remain unclear. Here, hydrogen/deuterium exchange mass spectrometry (HDX-MS) was employed to probe the NO-induced conformational changes of sGC. HDX-MS revealed NO-induced effects in several discrete regions. NO binding to the heme-NO/O2-binding (H-NOX) domain perturbs a signaling surface implicated in Per/Arnt/Sim (PAS) domain interactions. Furthermore, NO elicits striking conformational changes in the junction between the PAS and helical domains that propagate as perturbations throughout the adjoining helices. Ultimately, NO binding stimulates the catalytic domain by contracting the active site pocket. Together, these conformational changes delineate an allosteric pathway linking NO binding to activation of the catalytic domain.


Subject(s)
Cyclic GMP/chemistry , Guanylate Cyclase/chemistry , Nitric Oxide/chemistry , Protein Subunits/chemistry , Receptors, Cytoplasmic and Nuclear/chemistry , Amino Acid Sequence , Catalytic Domain , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Guanylate Cyclase/genetics , Humans , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Folding , Protein Multimerization , Protein Structure, Secondary , Protein Subunits/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Soluble Guanylyl Cyclase
19.
J Biol Chem ; 289(2): 814-26, 2014 Jan 10.
Article in English | MEDLINE | ID: mdl-24187139

ABSTRACT

Retinoid X receptors (RXRs) are obligate partners for several other nuclear receptors, and they play a key role in several signaling processes. Despite being a promiscuous heterodimer partner, this nuclear receptor is a target of therapeutic intervention through activation using selective RXR agonists (rexinoids). Agonist binding to RXR initiates a large conformational change in the receptor that allows for coactivator recruitment to its surface and enhanced transcription. Here we reveal the structural and dynamical changes produced when a coactivator peptide binds to the human RXRα ligand binding domain containing two clinically relevant rexinoids, Targretin and 9-cis-UAB30. Our results show that the structural changes are very similar for each rexinoid and similar to those for the pan-agonist 9-cis-retinoic acid. The four structural changes involve key residues on helix 3, helix 4, and helix 11 that move from a solvent-exposed environment to one that interacts extensively with helix 12. Hydrogen-deuterium exchange mass spectrometry reveals that the dynamics of helices 3, 11, and 12 are significantly decreased when the two rexinoids are bound to the receptor. When the pan-agonist 9-cis-retinoic acid is bound to the receptor, only the dynamics of helices 3 and 11 are reduced. The four structural changes are conserved in all x-ray structures of the RXR ligand-binding domain in the presence of agonist and coactivator peptide. They serve as hallmarks for how RXR changes conformation and dynamics in the presence of agonist and coactivator to initiate signaling.


Subject(s)
Fatty Acids, Unsaturated/metabolism , Naphthalenes/metabolism , Nuclear Receptor Coactivator 2/metabolism , Retinoid X Receptor alpha/metabolism , Tetrahydronaphthalenes/metabolism , Alitretinoin , Amino Acid Sequence , Bexarotene , Binding Sites , Crystallography, X-Ray , Fatty Acids, Unsaturated/chemistry , Humans , Ligands , Models, Molecular , Molecular Sequence Data , Molecular Structure , Naphthalenes/chemistry , Nuclear Receptor Coactivator 2/chemistry , Protein Binding , Protein Conformation , Protein Multimerization , Protein Structure, Secondary , Protein Structure, Tertiary , Retinoid X Receptor alpha/chemistry , Tetrahydronaphthalenes/chemistry , Tretinoin/chemistry , Tretinoin/metabolism
20.
Structure ; 21(11): 1942-53, 2013 Nov 05.
Article in English | MEDLINE | ID: mdl-24076403

ABSTRACT

AMP-activated protein kinase (AMPK) monitors cellular energy, regulates genes involved in ATP synthesis and consumption, and is allosterically activated by nucleotides and synthetic ligands. Analysis of the intact enzyme with hydrogen/deuterium exchange mass spectrometry reveals conformational perturbations of AMPK in response to binding of nucleotides, cyclodextrin, and a synthetic small molecule activator, A769662. Results from this analysis clearly show that binding of AMP leads to conformational changes primarily in the γ subunit of AMPK and subtle changes in the α and ß subunits. In contrast, A769662 causes profound conformational changes in the glycogen binding module of the ß subunit and in the kinase domain of the α subunit, suggesting that the molecular binding site of the latter resides between the α and ß subunits. The distinct short- and long-range perturbations induced upon binding of AMP and A769662 suggest fundamentally different molecular mechanisms for activation of AMPK by these two ligands.


Subject(s)
AMP-Activated Protein Kinases/chemistry , Allosteric Regulation , Biphenyl Compounds , Catalytic Domain , Deuterium Exchange Measurement , Enzyme Activation , Enzyme Activators/chemistry , Humans , Models, Molecular , Protein Binding , Protein Structure, Secondary , Pyrones/chemistry , Thiophenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...