Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Cancer Immunol Res ; 10(7): 900-916, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35612500

ABSTRACT

T follicular helper (Tfh) cells are a subset of CD4+ T cells essential in immunity and have a role in helping B cells produce antibodies against pathogens. However, their role during cancer progression remains unknown. The mechanism of action of Tfh cells remains elusive because contradictory data have been reported on their protumor or antitumor responses in human and murine tumors. Like Tfh cells, Th2 cells are also involved in humoral immunity and are regularly associated with tumor progression and poor prognosis, mainly through their secretion of IL4. Here, we showed that Tfh cells expressed hematopoietic prostaglandin D2 (PGD2) synthase in a pSTAT1/pSTAT3-dependent manner. Tfh cells produced PGD2, which led to recruitment of Th2 cells via the PGD2 receptor chemoattractant receptor homologous molecule expressed on Th type 2 cells (CRTH2) and increased their effector functions. This cross-talk between Tfh and Th2 cells promoted IL4-dependent tumor growth. Correlation between Th2 cells, Tfh cells, and hematopoietic PGD2 synthase was observed in different human cancers and associated with outcome. This study provides evidence that Tfh/Th2 cross-talk through PGD2 limits the antitumor effects of Tfh cells and, therefore, could serve as a therapeutic target.


Subject(s)
Interleukin-4 , Prostaglandin D2 , Animals , Cell Communication , Humans , Intramolecular Oxidoreductases , Lipocalins , Mice , Prostaglandin D2/pharmacology
2.
Nat Immunol ; 23(2): 262-274, 2022 02.
Article in English | MEDLINE | ID: mdl-35102345

ABSTRACT

Tumors poorly infiltrated by T cells are more resistant to immunogenic chemotherapies and checkpoint inhibition than highly infiltrated tumors. Using murine models, we found that CCR6+ type 3 innate lymphoid cells (ILC3s) can trigger an increase in the number of T cells infiltrating a tumor. Shortly after administration of cisplatin chemotherapy, production of the chemokine CCL20 and proinflammatory cytokine IL-1ß at the tumor site led to the recruitment and activation of ILC3s. Within the tumor, ILC3 production of the chemokine CXCL10 was responsible for the recruitment of CD4+ and CD8+ T lymphocytes to the tumor. ILC3-dependent infiltration of T cells was essential for antitumor immune responses and increased the efficacy of checkpoint inhibition. Thus, we reveal an essential role of CCL20 and IL-1ß, which promote ILC3-dependent antitumor immunity and enhance tumor sensitivity to immunotherapy.


Subject(s)
Immunity, Innate/immunology , Lymphocytes/immunology , Neoplasms/immunology , Neoplasms/therapy , Animals , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Cytokines/immunology , Female , Humans , Immune Checkpoint Inhibitors/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL
3.
J Immunother Cancer ; 9(6)2021 06.
Article in English | MEDLINE | ID: mdl-34103351

ABSTRACT

BACKGROUND: T follicular helper cells (Tfh) are essential to shape B cell response during germinal center formation. Tfh accumulation has been reported in various human cancers, with positive or negative prognostic roles. However, the mechanisms explaining the accumulation of Tfh and their role in cancer remain obscure. METHODS: In vitro differentiated and mouse cell sorted Tfh phenotype was evaluated by flow cytometry and quantitative PCR (qPCR). Antitumor effect of Tfh was evaluated by adoptive transfer in different tumor-bearing mice models. The involvement of immune cells, cytokines and chemokines was evaluated, using depleting antibodies. Chemokines and cytokines expression and production were evaluated by qPCR and ELISA. In human, the impact of immune cells and chemokines on survival was evaluated by analyzing transcriptomic data from public databases and from our own patient cohorts. RESULTS: In this study, we show that Tfh exert an antitumor immune effect in a CD8+-dependent manner. Tfh produce interleukin-21, which sustains proliferation, viability, cytokine production and cytotoxic functions of exhausted T cells. The presence of Tfh is required for efficacy of antiprogrammed cell death ligand-1 therapy. Tfh accumulate in the tumor bed and draining lymph nodes in different mouse cancer models. This recruitment is due to the capacity of transforming growth factor ß to drive Chemokine (C-X-C motif) Ligand 13 expression, a chemoattractant of Tfh, by intratumor CD8+ T cells. Accumulation of Tfh and exhausted CD8+ T cells predicts cancer outcome in various cancer types. In patients treated with anti-programmed cell death-1 mAb, accumulation of Tfh and CD8+ at the tumor site is associated with outcome. CONCLUSION: This study provides evidence that CD8+/Tfh crosstalk is important in shaping antitumor immune response generated by immunotherapy.


Subject(s)
Brain Neoplasms/therapy , Breast Neoplasms/therapy , Glioblastoma/therapy , Immune Checkpoint Inhibitors/administration & dosage , T Follicular Helper Cells/transplantation , Adoptive Transfer , Animals , Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Agents, Immunological/pharmacology , Brain Neoplasms/immunology , Breast Neoplasms/genetics , Breast Neoplasms/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Chemokine CXCL13/genetics , Chemokine CXCL13/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Glioblastoma/genetics , Glioblastoma/immunology , Humans , Immune Checkpoint Inhibitors/pharmacology , Interleukins/genetics , Interleukins/metabolism , Mice , T Follicular Helper Cells/immunology , Treatment Outcome , Xenograft Model Antitumor Assays
4.
Cancer Immunol Res ; 9(3): 324-336, 2021 03.
Article in English | MEDLINE | ID: mdl-33419764

ABSTRACT

It is clearly established that the immune system can affect cancer response to therapy. However, the influence of the tumor microenvironment (TME) on immune cells is not completely understood. In this respect, alternative splicing is increasingly described to affect the immune system. Here, we showed that the TME, via a TGFß-dependent mechanism, increased alternative splicing events and induced the expression of an alternative isoform of the IRF1 transcription factor (IRF1Δ7) in Th1 cells. We found that the SFPQ splicing factor (splicing factor, proline- and glutamine-rich) was responsible for the IRF1Δ7 production. We also showed, in both mice and humans, that the IRF1 alternative isoform altered the full-length IRF1 transcriptional activity on the Il12rb1 promoter, resulting in decreased IFNγ secretion in Th1 cells. Thus, the IRF1Δ7 isoform was increased in the TME, and inhibiting IRF1Δ7 expression could potentiate Th1 antitumor responses.


Subject(s)
Interferon Regulatory Factor-1/genetics , Interferon-gamma/metabolism , Neoplasms/immunology , Alternative Splicing , Animals , Cell Line, Tumor , Disease Models, Animal , Gene Expression Regulation, Neoplastic/immunology , Gene Knockdown Techniques , Humans , Interferon Regulatory Factor-1/metabolism , Mice , Neoplasms/genetics , Neoplasms/pathology , Promoter Regions, Genetic , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA Precursors/metabolism , RNA, Messenger/metabolism , RNA-Seq , Receptors, Interleukin-12 , Th1 Cells/immunology , Th1 Cells/metabolism , Tumor Escape/genetics , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
5.
J Immunother Cancer ; 8(1)2020 05.
Article in English | MEDLINE | ID: mdl-32385145

ABSTRACT

BACKGROUND: We have previously shown that 5-fluorouracil (5-FU) selectively kills myeloid-derived suppressor cells (MDSCs) and activates NLRP3 (NOD-leucine rich repeat and pyrin containing protein 3) inflammasome. NLRP3 activation leads to caspase-1 activation and production of IL-1ß, which in turn favors secondary tumor growth. We decided to explore the effects of either a heat shock (HS) or the deficiency in heat shock protein (HSP) 70, previously shown to respectively inhibit or increase NLRP3 inflammasome activation in macrophages. METHODS: Caspase-1 activation was detected in vitro in MSC-2 cells by western blot and in vivo or ex vivo in tumor and/or splenic MDSCs by flow cytometry. The effects of HS, HSP70 deficiency and anakinra (an IL-1 inhibitor) on tumor growth and mice survival were studied in C57BL/6 WT or Hsp70-/- tumor-bearing mice. Finally, Th17 polarization was evaluated by qPCR (Il17a, Rorc) and angiogenic markers by qPCR (Pecam1, Eng) and immunohistochemistry (ERG). RESULTS: HS inhibits 5-FU-mediated caspase-1 activation in vitro and in vivo without affecting its cytotoxicity on MDSCs. Moreover, it enhances the antitumor effect of 5-FU treatment and favors mice survival. Interestingly, it is associated to a decreased Th17 and angiogenesis markers in tumors. IL-1ß injection is able to bypass HS+5-FU antitumor effects. In contrast, in Hsp70-/- MDSCs, 5-FU-mediated caspase-1 activation is increased in vivo and in vitro without effect on 5-FU cytotoxicity. In Hsp70-/- mice, the antitumor effect of 5-FU was impeded, with an increased Th17 and angiogenesis markers in tumors. Finally, the effects of 5-FU on tumor growth can be restored by inhibiting IL-1ß, using anakinra. CONCLUSION: This study provides evidence on the role of HSP70 in tuning 5-FU antitumor effect and suggests that HS can be used to improve 5-FU anticancer effect.


Subject(s)
Caspase 1/metabolism , Fluorouracil/pharmacology , HSP70 Heat-Shock Proteins/metabolism , Heat-Shock Response , Inflammasomes/immunology , Lymphoma/immunology , Myeloid-Derived Suppressor Cells/immunology , Animals , Antimetabolites, Antineoplastic/pharmacology , Enzyme Activation , Female , Inflammasomes/drug effects , Inflammasomes/metabolism , Lymphoma/drug therapy , Lymphoma/metabolism , Lymphoma/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Myeloid-Derived Suppressor Cells/drug effects , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/pathology
6.
Front Cell Dev Biol ; 8: 167, 2020.
Article in English | MEDLINE | ID: mdl-32328491

ABSTRACT

The mechanisms leading to NOD-leucine rich repeat and pyrin containing protein 3 (NLRP3) inflammasome activation are still debated. It is well established that oligomerized NLRP3 interacts with apoptosis associated Speck-like protein containing a CARD domain (ASC) which polymerizes into filaments recruiting procaspase-1, leading to its activation. However, pathways triggering NLRP3 activation, such as potassium efflux, ROS production or lysosomal permeabilization, can be required or not, depending on the activators used. Here we proposed to evaluate the importance of Cathepsin B on NLRP3 inflammasome assembly and activation. Using Cathepsin B-/- BMDMs (Bone Marrow-Derived Macrophages), we first show that Cathepsin B is required for caspase-1 activation, IL-1ß production and ASC speck formation, upon treatment with different types of NLRP3 activators, i.e., ATP, nigericin or crystals. Moreover, in these conditions, Cathepsin B interacts with NLRP3 at the endoplasmic reticulum (ER) level. To conclude, different NLRP3 activators lead to Cathepsin B interaction with NLRP3 at the ER level and to subsequent caspase-1 activation.

7.
Mol Nutr Food Res ; 64(11): e1901286, 2020 06.
Article in English | MEDLINE | ID: mdl-32306526

ABSTRACT

SCOPE: Scope: It is well established that immune response and inflammation promote tumoral progression. Immune cells communicate through direct contact or through cytokine secretion, and it is the pro-inflammatory status that will tip the balance toward tumor progression or anti-tumor immunity. It is demonstrated here that a red wine extract (RWE) can decrease inflammation through its action on the inflammasome complex. This study determines whether an RWE could impact other key actors of inflammation, including T helper 17 (Th17) immune cells in particular. METHODS AND RESULTS: Methods and results: Using an RWE containing 4.16 g of polyphenols/liter of wine, it is shown that RWE decreases colorectal cancer cells in vitro and induces a reduction in colorectal tumor growth associated with a decrease in tumor-infiltrating lymphocytes in vivo. The process of T-lymphocyte differentiation in Th17 cells is altered by RWE, as revealed by the decrease in the expression of key actors controlling this process, such as signal transducer and activator of transcription 3 and retinoid acid-related orphan receptor γt. This disruption is associated with an inhibition of inflammatory interleukin 17 secretion. CONCLUSION: The data highlights the major involvement of Th17 immune cells in the biological effects of an RWE.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Colorectal Neoplasms/drug therapy , Plant Extracts/pharmacology , Th17 Cells/drug effects , Wine , Animals , Antineoplastic Agents, Phytogenic/chemistry , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Colorectal Neoplasms/pathology , Female , HCT116 Cells , Humans , Interleukin-17/metabolism , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/pathology , Mice, Inbred BALB C , Mice, Inbred C57BL , Plant Extracts/chemistry , Th17 Cells/pathology , Wine/analysis , Xenograft Model Antitumor Assays
8.
Int J Cancer ; 145(11): 3101-3111, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31344262

ABSTRACT

Colorectal cancer is a highly metastatic disease that could invade various distal organs and also the peritoneal cavity leading to peritoneal carcinomatosis. This is a terminal condition with poor prognosis and only palliative treatments such as cytoreductive surgery and intraperitoneal chemotherapy are proposed to some patients. However, clinicians use different parameters of treatments without any consensus. Here we decided to evaluate the effect of osmolarity in the efficacy of this procedure to kill colon cancer cells. We first show that a short exposure of platinum derivatives in hypotonic conditions is more efficient to decrease cell viability of human and murine colon cancer cells in vitro as compared to isotonic conditions. This is related to more important incorporation of platinum and the capacity of hypotonic stress to induce the copper transporter CTR1 oligomerization. Oxaliplatin in hypotonic conditions induces caspase-dependent cell death of colon cancer cells. Moreover, hypotonic conditions also modulate the capacity of oxaliplatin and cisplatin (but not carboplatin) to induce immunogenic cell death (ICD). In vivo, oxaliplatin in hypotonic conditions increases CD8+ T cell tumor infiltration and activation. Finally, in a murine peritoneal carcinomatosis model, oxaliplatin in hypotonic conditions is the only tested protocol which is able to slow down the appearance of tumor nodules and increase mice survival, while showing no effect in CD8+ T cells depleted mice or in immunodeficient mice. Altogether, our study provides new information both in vitro and in a preclinical model of peritoneal carcinomatosis, which highlights the importance of hypoosmolarity in intraperitoneal chemotherapy.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Colonic Neoplasms/drug therapy , Osmotic Pressure , Oxaliplatin/administration & dosage , Peritoneal Neoplasms/drug therapy , Peritoneal Neoplasms/secondary , Animals , CD8-Positive T-Lymphocytes/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Colonic Neoplasms/immunology , Female , HCT116 Cells , HT29 Cells , Humans , Injections, Intraperitoneal , Lymphocyte Activation/drug effects , Mice , Oxaliplatin/pharmacology , Peritoneal Neoplasms/immunology , Xenograft Model Antitumor Assays
9.
Int Rev Cell Mol Biol ; 341: 1-61, 2018.
Article in English | MEDLINE | ID: mdl-30262030

ABSTRACT

Understanding the basis of cellular differentiation is a fundamental issue in developmental biology but also for the comprehension of pathological processes. In fact, the palette of developmental decisions for naive CD4 T cells is a critical aspect of the development of appropriate immune responses which could control infectious processes or cancer growth. However, the current accumulation of data on CD4 T cells biology reveals a complex world with different helper populations. Naive CD4 T cells can differentiate into different subtypes in response to cytokine stimulation. This stimulation involves a complex transcriptional network implicating the activation of Signal Transducer and Activator of Transcription but also master regulator transcription factors allowing the functions of each helper T lymphocyte subtype. In this review, we will present an overview of the transcriptional regulation which controls process of helper T cells differentiation. We will focus on the role of initiator transcriptional factors and on master regulators but also on other nonspecific transcriptional factors which refine the T helper polarization to stabilize or modulate the differentiation program.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Cell Differentiation , Transcription Factors/metabolism , Transcription, Genetic , Animals , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/physiology , Gene Expression Regulation , Humans
10.
Oncoimmunology ; 7(6): e1433981, 2018.
Article in English | MEDLINE | ID: mdl-29872568

ABSTRACT

BACKGROUND: Chemotherapy is currently evaluated in order to enhance the efficacy of immune checkpoint blockade (ICB) therapy in colorectal cancer. However, the mechanisms by which these drugs could synergize with ICB remains unclear. The impact of chemotherapy on the PD-1/PD-L1 pathway and the resulting anticancer immune responses was assessed in two mouse models of colorectal cancer and validated in tumor samples from metastatic colorectal cancer patients that received neoadjuvant treatment. We demonstrated that 5-Fluorouracil plus Oxaliplatin (Folfox) drove complete tumor cure in mice when combined to anti-PD-1 treatment, while each monotherapy failed. This synergistic effect relies on the ability of Folfox to induce tumor infiltration by activated PD-1+ CD8 T cells in a T-bet dependent manner. This effect was concomitantly associated to the expression of PD-L1 on tumor cells driven by IFN-γ secreted by PD-1+ CD8 T cells, indicating that Folfox triggers tumor adaptive immune resistance. Finally, we observed an induction of PD-L1 expression and high CD8 T cell infiltration in the tumor microenvironment of colorectal cancer patients treated by Folfox regimen. Our study delineates a molecular pathway involved in Folfox-induced adaptive immune resistance in colorectal cancer. The results strongly support the use of immune checkpoint blockade therapy in combination with chemotherapies like Folfox.

11.
Cell Stress ; 3(1): 9-18, 2018 Nov 27.
Article in English | MEDLINE | ID: mdl-31225495

ABSTRACT

Adaptive T cell immune response is essential for tumor growth control. The efficacy of immune checkpoint inhibitors is regulated by intratumoral immune response. The tumor microenvironment has a major role in adaptive immune response tuning. Tumor cells generate a particular metabolic environment in comparison to other tissues. Tumors are characterized by glycolysis, hypoxia, acidosis, amino acid depletion and fatty acid metabolism modification. Such metabolic changes promote tumor growth, impair immune response and lead to resistance to therapies. This review will detail how these modifications strongly affect CD8 and CD4 T cell functions and impact immunotherapy efficacy.

12.
Nat Commun ; 8(1): 2085, 2017 12 12.
Article in English | MEDLINE | ID: mdl-29233972

ABSTRACT

Interferon regulatory factors (IRF) have critical functions in lymphoid development and in immune response regulation. Although many studies have described the function of IRF4 in CD4+ T cells, few have focused on the IRF4 homologue, IRF8. Here, we show that IRF8 is required for Th9 differentiation in vitro and in vivo. IRF8 functions through a transcription factor complex consisting of IRF8, IRF4, PU.1 and BATF, which binds to DNA and boosts Il9 transcription. By contrast, IRF8 deficiency promotes the expression of other genes such as Il4, as IRF8 dimerises with the transcriptional repressor ETV6 and inhibits Il4 expression. In vivo, IRF8 is essential for the anti-tumour effects of Th9 cells in mouse melanoma models. Our results show that IRF8 complexes boost the Th9 program and repress Il4 expression to modulate Th9 cell differentiation, thereby implicating IRF8 as a potential therapeutic target to affect Th9 responses in cancer therapy.


Subject(s)
Cell Differentiation/genetics , Interferon Regulatory Factors/metabolism , Melanoma/immunology , T-Lymphocytes, Helper-Inducer/metabolism , Transcription, Genetic/immunology , Animals , Basic-Leucine Zipper Transcription Factors/metabolism , Cell Differentiation/immunology , Female , Gene Knockdown Techniques , Humans , Interferon Regulatory Factors/genetics , Interleukin-9/metabolism , Mice , Mice, Inbred C57BL , Proto-Oncogene Proteins/metabolism , RNA, Small Interfering/metabolism , T-Lymphocytes, Helper-Inducer/immunology , Trans-Activators/metabolism , Xenograft Model Antitumor Assays
13.
Front Immunol ; 8: 1184, 2017.
Article in English | MEDLINE | ID: mdl-28993775

ABSTRACT

The behaviors of lymphocytes, including CD4+ T helper cells, are controlled on many levels by internal metabolic properties. Lipid metabolites have recently been ascribed a novel function as immune response modulators and perturbation of steroids pathways modulates inflammation and potentially promotes a variety of diseases. However, the impact of lipid metabolism on autoimmune disease development and lymphocyte biology is still largely unraveled. In this line, oxysterols, oxidized forms of cholesterol, have pleiotropic roles on the immune response aside from their involvements in lipid metabolism. The oxysterols 25-hydroxycholesterol (25-OHC) and 7α,25-dihydroxycholesterol (7α,25-OHC) regulate antiviral immunity and immune cell chemotaxis. However, their physiological effects on adaptive immune response in particular on various subset CD4+ T lymphocytes are largely unknown. Here, we assessed oxysterol levels in subset of CD4+ T cells and demonstrated that 25-OHC and transcript levels of its synthesizing enzyme, cholesterol 25-hydroxylase, were specifically increased in IL-27-induced type 1 regulatory T (TR1) cells. We further showed that 25-OHC acts as a negative regulator of TR1 cells in particular of IL-10 secretion via liver X receptor signaling. Not only do these findings unravel molecular mechanisms accounting for IL-27 signaling but also they highlight oxysterols as pro-inflammatory mediators that dampens regulatory T cell responses and thus unleash a pro-inflammatory response.

15.
J Immunol ; 195(9): 4144-53, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26408664

ABSTRACT

It is known that differentiation of Th17 cells is promoted by activation of STAT3 and inhibited by activation of STAT1. Although both transcription factors are activated by several cytokines, including IL-6, IL-21, and IL-27, each of these cytokines has a very different effect on Th17 differentiation, ranging from strong induction (IL-6) to strong inhibition (IL-27). To determine the molecular basis for these differences, we measured STAT3 and STAT1 activation profiles for IL-6, IL-21, and IL-27, as well as for cytokine pairs over time. We found that the ratio of activated STAT3/activated STAT1 is crucial in determining whether cytokines promote or inhibit Th17 differentiation. IL-6 and IL-21 induced p-STAT3/p-STAT1 ratios > 1, leading to the promotion of Th17 differentiation, whereas IL-27 or IL-6+IL-27 induced p-STAT3/p-STAT1 ratios < 1, resulting in inhibition of Th17 differentiation. Consistent with these findings, we show that IL-27 induces sufficient p-STAT3 to promote Th17 differentiation in the absence of STAT1. Furthermore, IL-27-induced STAT1-deficient T cells were indistinguishable from bona fide highly proinflammatory Th17 cells because they induced severe experimental autoimmune encephalomyelitis upon adoptive transfer. Our results suggest that the ratio of p-STAT3/p-STAT1 induced by a cytokine or cytokine pairs can be used to predict whether they induce a competent Th17-differentiation program.


Subject(s)
Interleukin-27/pharmacology , STAT1 Transcription Factor/physiology , Signal Transduction/physiology , Th17 Cells/drug effects , Adoptive Transfer , Animals , Cell Differentiation/drug effects , Interleukin-6/pharmacology , Interleukins/pharmacology , Mice , Mice, Inbred C57BL , STAT3 Transcription Factor/physiology , Th17 Cells/cytology
16.
Nat Immunol ; 16(8): 859-70, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26098997

ABSTRACT

The receptor NLRP3 is involved in the formation of the NLRP3 inflammasome that activates caspase-1 and mediates the release of interleukin 1ß (IL-1ß) and IL-18. Whether NLRP3 can shape immunological function independently of inflammasomes is unclear. We found that NLRP3 expression in CD4(+) T cells specifically supported a T helper type 2 (TH2) transcriptional program in a cell-intrinsic manner. NLRP3, but not the inflammasome adaptor ASC or caspase-1, positively regulated a TH2 program. In TH2 cells, NLRP3 bound the Il4 promoter and transactivated it in conjunction with the transcription factor IRF4. Nlrp3-deficient TH2 cells supported melanoma tumor growth in an IL-4-dependent manner and also promoted asthma-like symptoms. Our results demonstrate the ability of NLRP3 to act as a key transcription factor in TH2 differentiation.


Subject(s)
Carrier Proteins/immunology , Cell Differentiation/immunology , Th2 Cells/immunology , Trans-Activators/immunology , Animals , Asthma/genetics , Asthma/immunology , Asthma/metabolism , Blotting, Western , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Differentiation/genetics , Cell Line, Tumor , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/immunology , Inflammasomes/genetics , Inflammasomes/immunology , Inflammasomes/metabolism , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/immunology , Interferon Regulatory Factors/metabolism , Interleukin-4/genetics , Interleukin-4/immunology , Interleukin-4/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , NIH 3T3 Cells , NLR Family, Pyrin Domain-Containing 3 Protein , Neoplasms, Experimental/genetics , Neoplasms, Experimental/immunology , Neoplasms, Experimental/metabolism , Oligonucleotide Array Sequence Analysis , Promoter Regions, Genetic/genetics , Promoter Regions, Genetic/immunology , Protein Binding/immunology , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/genetics , Signal Transduction/immunology , Th2 Cells/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism
17.
Nat Immunol ; 15(8): 758-66, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24973819

ABSTRACT

The TH9 subset of helper T cells was initially shown to contribute to the induction of autoimmune and allergic diseases, but subsequent evidence has suggested that these cells also exert antitumor activities. However, the molecular events that account for their effector properties are elusive. Here we found that the transcription factor IRF1 enhanced the effector function of TH9 cells and dictated their anticancer properties. Under TH9-skewing conditions, interleukin 1ß (IL-1ß) induced phosphorylation of the transcription factor STAT1 and subsequent expression of IRF1, which bound to the promoters of Il9 and Il21 and enhanced secretion of the cytokines IL-9 and IL-21 from TH9 cells. Furthermore, IL-1ß-induced TH9 cells exerted potent anticancer functions in an IRF1- and IL-21-dependent manner. Our findings thus identify IRF1 as a target for controlling the function of TH9 cells.


Subject(s)
Interferon Regulatory Factor-1/immunology , Interleukins/immunology , Melanoma, Experimental/immunology , T-Lymphocytes, Helper-Inducer/immunology , 3T3 Cells , Animals , Base Sequence , Cell Line , Female , Green Fluorescent Proteins/biosynthesis , Green Fluorescent Proteins/genetics , Interferon Regulatory Factor-1/biosynthesis , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukin-10/antagonists & inhibitors , Interleukin-10/immunology , Interleukin-9/genetics , Interleukin-9/immunology , Interleukin-9/metabolism , Interleukins/genetics , Interleukins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Ovalbumin/immunology , Phosphorylation/immunology , Proto-Oncogene Proteins c-fyn/antagonists & inhibitors , Proto-Oncogene Proteins c-fyn/genetics , RNA Interference , RNA, Small Interfering , STAT1 Transcription Factor/immunology , Sequence Analysis, RNA , T-Lymphocytes, Helper-Inducer/metabolism
18.
PLoS One ; 8(6): e65181, 2013.
Article in English | MEDLINE | ID: mdl-23762310

ABSTRACT

Bleomycin (BLM) is an anticancer drug currently used for the treatment of testis cancer and Hodgkin lymphoma. This drug triggers cancer cell death via its capacity to generate radical oxygen species (ROS). However, the putative contribution of anticancer immune responses to the efficacy of BLM has not been evaluated. We make here the observation that BLM induces immunogenic cell death. In particular, BLM is able to induce ROS-mediated reticulum stress and autophagy, which result in the surface exposure of chaperones, including calreticulin and ERp57, and liberation of HMBG1 and ATP. BLM induces anti-tumor immunity which relies on calreticulin, CD8(+) T cells and interferon-γ. We also find that, in addition to its capacity to trigger immunogenic cell death, BLM induces expansion of Foxp3+ regulatory T (Treg) cells via its capacity to induce transforming growth factor beta (TGFß) secretion by tumor cells. Accordingly, Treg cells or TGFß depletion dramatically potentiates the antitumor effect of BLM. We conclude that BLM induces both anti-tumor CD8(+) T cell response and a counteracting Treg proliferation. In the future, TGFß or Treg inhibition during BLM treatment could greatly enhance BLM anti-tumor efficacy.


Subject(s)
Antineoplastic Agents/pharmacology , Bleomycin/pharmacology , Immunity/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology , Animals , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Humans , Immunity, Innate/drug effects , Mice , T-Lymphocytes, Regulatory/drug effects , Transforming Growth Factor beta/metabolism
19.
Cancer Res ; 73(12): 3578-90, 2013 Jun 15.
Article in English | MEDLINE | ID: mdl-23619236

ABSTRACT

Activation of the transcription factor PPARγ by the n-3 fatty acid docosahexaenoic acid (DHA) is implicated in controlling proinflammatory cytokine secretion, but the intracellular signaling pathways engaged by PPARγ are incompletely characterized. Here, we identify the adapter-encoding gene SOCS3 as a critical transcriptional target of PPARγ. SOCS3 promoter binding and gene transactivation by PPARγ was associated with a repression in differentiation of proinflammatory T-helper (TH)17 cells. Accordingly, TH17 cells induced in vitro displayed increased SOCS3 expression and diminished capacity to produce interleukin (IL)-17 following activation of PPARγ by DHA. Furthermore, naïve CD4 T cells derived from mice fed a DHA-enriched diet displayed less capability to differentiate into TH17 cells. In two different mouse models of cancer, DHA prevented tumor outgrowth and angiogenesis in an IL-17-dependent manner. Altogether, our results uncover a novel molecular pathway by which PPARγ-induced SOCS3 expression prevents IL-17-mediated cancer growth.


Subject(s)
Mammary Neoplasms, Experimental/genetics , PPAR gamma/genetics , Suppressor of Cytokine Signaling Proteins/genetics , Transcriptional Activation , Animals , Blotting, Western , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/metabolism , Cell Differentiation/drug effects , Cell Line, Tumor , Diet , Docosahexaenoic Acids/administration & dosage , Docosahexaenoic Acids/pharmacology , Female , Interleukin-17/metabolism , Mammary Neoplasms, Experimental/pathology , Mammary Neoplasms, Experimental/prevention & control , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Mice, Nude , PPAR gamma/agonists , PPAR gamma/metabolism , Promoter Regions, Genetic/genetics , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , Suppressor of Cytokine Signaling 3 Protein , Suppressor of Cytokine Signaling Proteins/metabolism , Th17 Cells/drug effects , Th17 Cells/metabolism , Tumor Burden/drug effects , Tumor Burden/genetics
20.
J Invest Dermatol ; 133(2): 499-508, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22951720

ABSTRACT

Dacarbazine (DTIC) is a cytotoxic drug widely used for melanoma treatment. However, the putative contribution of anticancer immune responses in the efficacy of DTIC has not been evaluated. By testing how DTIC affects host immune responses to cancer in a mouse model of melanoma, we unexpectedly found that both natural killer (NK) and CD8(+) T cells were indispensable for DTIC therapeutic effect. Although DTIC did not directly affect immune cells, it triggered the upregulation of NKG2D ligands on tumor cells, leading to NK cell activation and IFNγ secretion in mice and humans. NK cell-derived IFNγ subsequently favored upregulation of major histocompatibility complex class I molecules on tumor cells, rendering them sensitive to cytotoxic CD8(+) T cells. Accordingly, DTIC markedly enhanced cytotoxic T lymphocyte antigen 4 inhibition efficacy in vivo in an NK-dependent manner. These results underscore the immunogenic properties of DTIC and provide a rationale to combine DTIC with immunotherapeutic agents that relieve immunosuppression in vivo.


Subject(s)
CD8-Positive T-Lymphocytes/drug effects , Dacarbazine/pharmacology , Killer Cells, Natural/drug effects , Melanoma, Experimental/drug therapy , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Skin Neoplasms/drug therapy , Animals , Antineoplastic Agents, Alkylating/pharmacology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Disease Models, Animal , Humans , Interferon-gamma/immunology , Interferon-gamma/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Ligands , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , Mice, Nude , NK Cell Lectin-Like Receptor Subfamily K/immunology , Skin Neoplasms/immunology , Skin Neoplasms/pathology , Up-Regulation/drug effects , Up-Regulation/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...