Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 104: 473-484, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27585427

ABSTRACT

Bioassays are particularly useful tools to link the chemical and ecological assessments in water quality monitoring. Different methods cover a broad range of toxicity mechanisms in diverse organisms, and account for risks posed by non-target compounds and mixtures. Many tests are already applied in chemical and waste assessments, and stakeholders from the science-police interface have recommended their integration in regulatory water quality monitoring. Still, there is a need to address bioassay suitability to evaluate water samples containing emerging pollutants, which are a current priority in water quality monitoring. The presented interlaboratory study (ILS) verified whether a battery of miniaturized bioassays, conducted in 11 different laboratories following their own protocols, would produce comparable results when applied to evaluate blinded samples consisting of a pristine water extract spiked with four emerging pollutants as single chemicals or mixtures, i.e. triclosan, acridine, 17α-ethinylestradiol (EE2) and 3-nitrobenzanthrone (3-NBA). Assays evaluated effects on aquatic organisms from three different trophic levels (algae, daphnids, zebrafish embryos) and mechanism-specific effects using in vitro estrogenicity (ER-Luc, YES) and mutagenicity (Ames fluctuation) assays. The test battery presented complementary sensitivity and specificity to evaluate the different blinded water extract spikes. Aquatic organisms differed in terms of sensitivity to triclosan (algae > daphnids > fish) and acridine (fish > daphnids > algae) spikes, confirming the complementary role of the three taxa for water quality assessment. Estrogenicity and mutagenicity assays identified with high precision the respective mechanism-specific effects of spikes even when non-specific toxicity occurred in mixture. For estrogenicity, although differences were observed between assays and models, EE2 spike relative induction EC50 values were comparable to the literature, and E2/EE2 equivalency factors reliably reflected the sample content. In the Ames, strong revertant induction occurred following 3-NBA spike incubation with the TA98 strain, which was of lower magnitude after metabolic transformation and when compared to TA100. Differences in experimental protocols, model organisms, and data analysis can be sources of variation, indicating that respective harmonized standard procedures should be followed when implementing bioassays in water monitoring. Together with other ongoing activities for the validation of a basic bioassay battery, the present study is an important step towards the implementation of bioanalytical monitoring tools in water quality assessment and monitoring.


Subject(s)
Water Quality , Water , Animals , Biological Assay , Environmental Monitoring , Water Pollutants, Chemical , Water Purification
2.
Aquat Toxicol ; 80(2): 149-57, 2006 Nov 16.
Article in English | MEDLINE | ID: mdl-16963131

ABSTRACT

Northern elephant seals (Mirounga angustirostris) are characterized by extended fasting during which they rely entirely on their own body reserves. During fasts, lipids are mobilized from blubber to match the energy requirements of the animal. This transfer frees toxic fat-soluble pollutants into the blood circulation, which may exert adverse health effects, especially in young and developing animals. We investigated the dynamics of mobilization of polychlorinated biphenyls (PCBs) from the blubber of northern elephant seal pups during the post-weaning fast. Longitudinal samples of blubber and serum were collected from free-ranging animals throughout the fast at Año Nuevo, California. Blubber biopsies were separated into inner and outer layers. The PCB profiles of blubber and serum consisted mainly of penta- (PCB-101, -110, -118), hexa- (PCB-138, -153) and hepta- (PCB-180, -183, -187) chlorobiphenyls, which accounted for almost 90% of the total PCB burden. Total PCB concentrations in inner blubber increased significantly between early and late fasting (563.6+/-162.0 microg/kg lipids at early versus 911.6+/-513.1 microg/kg lipids at late fasting) whereas they remained fairly constant in outer blubber (572.6+/-134.8 microg/kg lipids at early versus 659.2+/-158.8 microg/kg lipids at late fasting). A corresponding rise of PCB concentrations was observed in serum during the second half of the fast (3.8+/-1.1 microg/l serum at early versus 7.2+/-0.9 microg/l at late fasting). The longitudinal changes in circulating total PCBs could not be explained by the changes in serum lipid fractions (cholesterol, phospholipids, triacylglycerols and free fatty acids). The increases in total PCB concentrations in inner blubber and serum were more pronounced in leaner animals, which suggests that they might be more at risk to potential toxic effects.


Subject(s)
Adipose Tissue/metabolism , Fasting/physiology , Polychlorinated Biphenyls/pharmacokinetics , Seals, Earless/physiology , Adipose Tissue/chemistry , Animals , Female , Lipids/blood , Longitudinal Studies , Male , Polychlorinated Biphenyls/analysis , Polychlorinated Biphenyls/blood , Seals, Earless/metabolism , Time Factors , Weaning
SELECTION OF CITATIONS
SEARCH DETAIL
...