Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biosens Bioelectron ; 88: 114-121, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-27499383

ABSTRACT

Dysfunctional mitochondria appear to be involved in many diseases through their role in respiration, reactive oxygen species generation, and energy production. To aid in the design of new biosensors based on mitochondria (MT), we have investigated the feasibility of detecting ion fluxes through the MT-membrane K+-ion channels using piezosensors with MTs immobilized either by hydrogen bonding or thin polypyrrole (PPy) binding film. We have demonstrated for the first time that the mitochondria-based piezosensors are able to detect ion fluxes and thus be utilized for drug development aimed at ion channel opener- or inhibitor-function. The quartz crystal resonator responding only to mass changes in the lower part of the MT film, penetrated by the acoustic wave, is able to detect a pronounced cationic dynamics in PPy-bonded MT piezosensors despite of the undoped-PPy preference for pure anion dynamics. The control experiments performed by resonance elastic light scattering (RELS) confirmed MT swelling/shrinking, ion dynamics, and osmotic water transfer in MTs, as well as the effects of exposure to a drug valinomycin at sub-nanomolar concentrations.


Subject(s)
Biosensing Techniques/instrumentation , Mitochondria/drug effects , Mitochondria/metabolism , Potassium Channels/metabolism , Cell Line , Dynamic Light Scattering/instrumentation , Electrochemical Techniques/instrumentation , Electrodes , Equipment Design , Humans , Ion Transport/drug effects , Ionophores/pharmacology , Mitochondrial Membranes/metabolism , Quartz Crystal Microbalance Techniques/instrumentation , Transducers , Valinomycin/pharmacology
2.
J Phys Chem B ; 120(21): 4782-90, 2016 06 02.
Article in English | MEDLINE | ID: mdl-27187043

ABSTRACT

Signaling properties of a fluorescent hairpin oligonucleotide molecular beacon (MB) encoded to recognize protein survivin (Sur) mRNA have been investigated. The process of complementary target binding to SurMB with 20-mer loop sequence is spontaneous, as expected, and characterized by a high affinity constant (K = 2.51 × 10(16) M(-1)). However, the slow kinetics at room temperature makes it highly irreversible. To understand the intricacies of target binding to MB, a detailed kinetic study has been performed to determine the rate constants and activation energy Ea for the reaction at physiological temperature (37 °C). Special attention has been paid to assess the value of Ea in view of reports of negative activation enthalpy for some nucleic acid reactions that would make the target binding even slower at increasing temperatures in a non-Arrhenius process. The target-binding rate constant determined is k = 3.99 × 10(3) M(-1) s(-1) at 37 °C with Ea = 28.7 ± 2.3 kcal/mol (120.2 ± 9.6 kJ/mol) for the temperature range of 23 to 55 °C. The positive high value of Ea is consistent with a kinetically controlled classical Arrhenius process. We hypothesize that the likely contribution to the activation energy barrier comes from the SurMB stem melting (tm = 53.7 ± 0.2 °C), which is a necessary step in the completion of target strand hybridization with the SurMB loop. A low limit of detection (LOD = 2 nM) for target tDNA has been achieved. Small effects of conformational polymorphs of SurMB have been observed on melting curves. Although these polymorphs could potentially cause a negative Ea, their effect on kinetic transients for target binding is negligible. No toehold preceding steps in the mechanism of target binding were identified.


Subject(s)
Biomarkers, Tumor/analysis , DNA/metabolism , DNA/chemistry , Fluorescent Dyes/chemistry , Humans , Inhibitor of Apoptosis Proteins/genetics , Inhibitor of Apoptosis Proteins/metabolism , Kinetics , Limit of Detection , Neoplasms/diagnosis , Nucleic Acid Conformation , Nucleic Acid Hybridization , Oligonucleotides/chemistry , Oligonucleotides/metabolism , Protein Binding , Spectrometry, Fluorescence , Survivin , Temperature , Thermodynamics
3.
Biosens Bioelectron ; 84: 37-43, 2016 Oct 15.
Article in English | MEDLINE | ID: mdl-26507667

ABSTRACT

The anti-apoptotic protein survivin (Sur) plays an important role in the regulation of cell division and inducing the chemotherapeutic drug resistance. The Sur protein and its mRNA have recently been studied as cancer biomarkers and potential targets for cancer therapy. In this work, we have focused on the design of immunosensors for the detection of Sur based on buried positive-potential barrier layer structure and anti-survivin antibody. The modification of solid AuQC piezoelectrodes was monitored by recording the resonance frequency shift and electrochemical measurements during each step of the sensor preparation. Our results indicate that the immunosensor with covalently bound monoclonal anti-survivin antibody can detect Sur with the limit of detection, LOD=1.7nM (S/N=3σ). The immunosensor applicability for the analysis of real samples was assessed by testing samples of cell lysate solutions obtained from human astrocytoma (glioblastoma) U-87MG cell line, with the experiments performed using the standard addition method. The good linearity of the calibration curves for PBS and lysate solutions at low Sur concentrations confirm the high specificity of the proposed biosensor and good discrimination against nonspecific interactions with lysate components. The calculations indicate that there is still room to increase the Sur capture capacity for Sur while miniaturizing the sensor. The important advantage of the sensor is that it can be reused by a simple regeneration procedure.


Subject(s)
Antibodies, Immobilized/chemistry , Biosensing Techniques/instrumentation , Immunoassay/instrumentation , Inhibitor of Apoptosis Proteins/analysis , Quartz Crystal Microbalance Techniques/instrumentation , Antibodies, Monoclonal/chemistry , Cell Line, Tumor , Electrochemical Techniques/instrumentation , Equipment Design , Humans , Limit of Detection , Oxidation-Reduction , Survivin
4.
J Phys Chem B ; 119(41): 13227-35, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26389984

ABSTRACT

The resonance energy transfer (RET) from excited fluorescent probe molecules to plasmonic gold nanoparticles (AuNPs) can be gated by modulating the width of channels (gates) in submonolayer protein shells surrounding AuNPs. We have explored the gated-RET (gRET) processes using an antiapoptotic protein survivin (Sur) as the gating material, citrate-capped gold nanoparticles (AuNP@Cit), and fluorescein isothiocyanate as the fluorescent probe. Despite the electrostatic repulsive forces between these components, a strong modulation of RET efficiency by Sur down to 240 pM (S/N = 3) is possible. Using piezometric measurements, we have confirmed the Sur adsorbability on Cit-coated Au surfaces with monolayer coverage: γSur = 5.4 pmol/cm(2) and Langmuirian adsorption constant KL,Sur = 1.09 × 10(9) M(-1). The AuNP@Cit/Sur stability has been corroborated using resonance elastic light scattering. The quantum mechanical calculations indicate that multiple hydrogen bonding between Cit ligands and -NH3(+), =NH2(+), and -NH2 groups of lysines and arginines of Sur have likely facilitated Sur bonding to nanoparticles. A theoretical model of gated-RET has been developed, enabling predictions of the system behavior. In contrast to the positive slope of the Stern-Volmer quenching dependence (F0/F) = f(QA), a negative slope has been obtained for gRET relationship (F0/F) = f(cP), attributed to the dequenching.


Subject(s)
Gold/chemistry , Inhibitor of Apoptosis Proteins/chemistry , Metal Nanoparticles/chemistry , Adsorption , Energy Transfer , Humans , Spectrum Analysis/methods , Survivin
5.
Anal Chem ; 84(11): 4970-8, 2012 Jun 05.
Article in English | MEDLINE | ID: mdl-22524145

ABSTRACT

A molecular beacon (MB) with stem-loop (hairpin) DNA structure and with attached fluorophore-quencher pair at the ends of the strand has been applied to study the interactions of Hg(2+) ions with a thymine-thymine (T-T) mismatch in Watson-Crick base-pairs and the ligative disassembly of MB·Hg(2+) complex by Hg(2+) sequestration with small biomolecule ligands. In this work, a five base-pair stem with configuration 5'-GGTGG...CCTCC-3' for self-hybridization of MB has been utilized. In this configuration, the four GC base-pair binding energy is not sufficient to hybridize fully at intermediate temperatures and to form a hairpin MB conformation. The T-T mismatch built-in into the stem area can effectively bind Hg(2+) ions creating a bridge, T-Hg-T. We have found that the T-Hg-T bridge strongly enhances the ability of MB to hybridize, as evidenced by an unusually large MB melting temperature shift observed on bridge formation, ΔT(m) = +15.1 ± 0.5 °C, for 100 nM MB in MOPS buffer. The observed ΔT(m) is the largest of the ΔT(m) found for other MBs and dsDNA structures. By fitting the parameters of the proposed model of reversible MB interactions to the experimental data, we have determined the T-Hg-T bridge formation constant at 25 °C, K(1) = 8.92 ± 0.42 × 10(17) M(-1) from mercury(II) titration data and K(1) = 1.04 ± 0.51 × 10(18) M(-1) from the bridge disassembly data; ΔG° = -24.53 ± 0.13 kcal/mol. We have found that the biomarker of oxidative stress and cardiovascular disease, homocysteine (Hcys), can sequester Hg(2+) ions from the T-Hg-T complex and withdraw Hg(2+) ions from MB in the form of stable Hg(Hcys)(2)H(2) complexes. Both the model fitting and independent (1)H NMR results on the thymidine-Hg-Hcys system indicate also the high importance of 1:1 complexes. The high value of K(1) for T-Hg-T bridge formation enables analytical determinations of low concentrations of Hg(2+) (limit of detection LOD = 19 nM or 3.8 ppb, based on 3σ method) and Hcys (LOD = 23 nM, 3σ method). The conditional stability constants for Hg(Hcys)H(2)(2+) and Hg(Hcys)(2)H(2) at 52 °C have been determined, ß(112) = 5.37 ± 0.3 × 10(46) M(-3), ß(122) = 3.80 ± 0.6 × 10(68) M(-4), respectively.


Subject(s)
Homocysteine/analysis , Mercury/analysis , Molecular Probes/chemistry , Oligonucleotides/chemistry , Thymine/analysis , Base Pairing , Fluorescent Dyes , Homocysteine/chemistry , Inverted Repeat Sequences , Kinetics , Limit of Detection , Magnetic Resonance Spectroscopy , Mercury/chemistry , Nucleic Acid Conformation , Nucleic Acid Hybridization , Temperature , Thermodynamics , Thymine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...