Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(9)2021 May 06.
Article in English | MEDLINE | ID: mdl-34066469

ABSTRACT

This work provides valuable information about unexplored catalytic systems tested in the transesterification reaction of vegetable oil with methanol. It was demonstrated that natural zeolite treatment leads to enhanced catalytic activity and yield of biodiesel production. The activation of the catalytic material in a mixture of 5% H2-95% Ar resulted in an improvement of the values of the TG conversion and fatty acid methyl esters (FAME) yield. In addition, it was proven that the incorporation of CaO, MgO and SrO oxides onto the natural zeolite surface improves the TG conversion and FAME yield values in the transesterification reaction.

2.
Materials (Basel) ; 14(1)2020 Dec 24.
Article in English | MEDLINE | ID: mdl-33374381

ABSTRACT

Biodiesel production from rapeseed oil and methanol via transesterification reaction facilitated by various monometallic catalyst supported on natural zeolite (NZ) was investigated. The physicochemical characteristics of the synthesized catalysts were studied by X-ray diffraction (XRD), Brunauer-Emmett-Teller method (BET), temperature-programmed-reduction in hydrogen (H2-TPR), temperature-programmed-desorption of ammonia (NH3-TPD), Scanning Electron Microscope equipped with EDX detector (SEM-EDS), and X-ray photoelectron spectroscopy (XPS) methods. The highest activity and methyl ester yields were obtained for the Pt/NZ catalyst. This catalyst showed the highest triglycerides conversion of 98.9% and fatty acids methyl esters yields of 94.6%. The activity results also confirmed the high activity of the carrier material (NZ) itself in the investigated reaction. Support material exhibited 90.5% of TG conversion and the Fatty Acid Methyl Esters yield (FAME) of 67.2%. Introduction of noble metals improves the TG conversion and FAME yield values. Increasing of the metal loading from 0.5 to 2 wt.% improves the reactivity properties of the investigated catalysts.

3.
Materials (Basel) ; 12(22)2019 Nov 19.
Article in English | MEDLINE | ID: mdl-31752263

ABSTRACT

The main objective of this work was to evaluate an impact of a support on the efficiency of nickel catalysts in the high-temperature conversion of lignocellulosic biomass to hydrogen-rich gas. The most important parameters influencing catalytic performance of the catalysts were identified. The properties of three materials (ZSM-5, ZrO2, and MCF (mesostructured cellular foam)) used as a support differing in surface acidity, surface area, pore structure, ability to interact with an active phase, and resistance to coking, have been studied. The results revealed that Ni/MCF, characterized by large pore size and pore volume, low acidity, small NiO crystallites size, and moderate interaction with the active phase, is the most efficient among studied catalysts, while an application of Ni on ZSM-5 support with high-acidity was not beneficial. The results suggest that structure of the support, in particular larger pore size and a better contact between an active phase and reaction intermediates, play an important role in the formation of gaseous products during thermal decomposition of lignocellulosic feedstock. On the other hand, high acidity of the support did not increase the formation of large amounts of hydrogen-rich gaseous products.

4.
Crit Rev Anal Chem ; 47(6): 490-498, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-28541719

ABSTRACT

Modern analytical methods play an important role in archaeological objects, including ceramics. This review focuses on the use of analytical methods such as: gas chromatography coupled mass spectrometry, Fourier transform infrared spectroscopy, time-of-flight secondary ion mass spectrometry (ToF-SIMS), powder X-ray diffraction with thermal analysis to study the chemical and mineralogical composition of archaeological samples and organic residues preserved inside. In this paper, special attention was paid to the ToF-SIMS method, which allows the determination of characteristic ions on the surface of ceramic samples.


Subject(s)
Archaeology , Ceramics/analysis , Ceramics/standards , Gas Chromatography-Mass Spectrometry/standards , Quality Control , Spectrometry, Mass, Secondary Ion/standards , Spectroscopy, Fourier Transform Infrared/standards , Temperature , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...