Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Reprod Toxicol ; : 108645, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38897308

ABSTRACT

Male reproductive capacity has fallen considerably in recent decades; in addition, the incidence of testicular cancer has increased in many developed countries. The cause of this phenomenon is unknown, but environmental toxicants are considered a major contributing factor. To study potential reproductive toxicants, robust in vitro testis models are needed. We have recently established a porcine testis organoid system with a high resemblance to the architectures of innate testis tissue. Here, we further investigated the testis morphogenesis, cell maturation, and endocrine function of the testis organoids. We also challenged this system with abiraterone, a steroidogenic inhibitor, to validate its suitability as an in vitro platform for endocrine toxicology tests. Our results showed that the testis cells in the organoids reorganize into testis cordal structures, and the cordal relative areas increase in the organoids over time of culture. Moreover, the diameters and cell numbers per cross-section of the cordal structures increased over time. Interestingly, Sertoli cells in the organoids gradually underwent maturational changes by showing increased expression of androgen receptors, decreased expression of the anti-müllerian hormone, and formation of the blood-testis barrier. Next, we confirmed that the organoids respond to hormonal stimulation and release multiple sex hormones, including testosterone, estradiol, and progesterone. Finally, we showed that the production of testosterone and estradiol in this system can be inhibited in response to the steroidogenic inhibitor. Taken together, our organoid system provides a promising in vitro platform for male reproductive toxicology studies on testis morphogenesis, somatic cell maturation, and endocrine production.

2.
Cells ; 12(18)2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37759457

ABSTRACT

In vitro spermatogenesis (IVS) has important applications including fertility preservation of prepubertal cancer patients; however, thus far, IVS has only been achieved using mouse models. To study the effects of growth factors on the maintenance of testicular tissue integrity, germ cell numbers, and potential induction of IVS using a porcine model, we cultured small testicular fragments (~2 mg) from 1-wk-old piglets under six different media conditions (DMEM + 10%KSR alone or supplemented with GDNF, bFGF, SCF, EGF, or a combination of all) for 8 weeks. Overall, tissues supplemented with GDNF and bFGF had the greatest seminiferous tubule integrity and least number of apoptotic cells. GDNF-supplemented tissues had the greatest number of gonocytes per tubule, followed by bFGF-supplemented tissues. There was evidence of gradual Sertoli cell maturation in all groups. Moreover, histological examination and the expression of c-KIT (a marker of differentiating spermatogonia and spermatocytes) and STRA8 (a marker of the pre/meiotic stage germ cells) confirmed the induction of IVS in all groups. However, GDNF- and bFGF-supplemented tissue cultures had greater numbers of seminiferous tubules with spermatocytes compared to other groups. In conclusion, overall, GDNF and bFGF supplementation better maintained the tissue integrity and gonocyte numbers and induced IVS in cultured testicular tissues.

3.
Cell Tissue Res ; 394(3): 393-421, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37721632

ABSTRACT

Men's reproductive health exclusively depends on the appropriate maturation of certain germ cells known as sperm. Certain illnesses, such as Klinefelter syndrome, cryptorchidism, and syndrome of androgen insensitivity or absence of testis maturation in men, resulting in the loss of germ cells and the removal of essential genes on the Y chromosome, can cause non-obstructive azoospermia. According to laboratory research, preserving, proliferating, differentiating, and transplanting spermatogonial stem cells or testicular tissue could be future methods for preserving the fertility of children with cancer and men with azoospermia. Therefore, new advances in stem cell research may lead to promising therapies for treating male infertility. The rate of progression and breakthrough in the area of in vitro spermatogenesis is lower than that of SSC transplantation, but newer methods are also being developed. In this regard, tissue and cell culture, supplements, and 3D scaffolds have opened new horizons in the differentiation of stem cells in vitro, which could improve the outcomes of male infertility. Various 3D methods have been developed to produce cellular aggregates and mimic the organization and function of the testis. The production of an artificial reproductive organ that supports SSCs differentiation will certainly be a main step in male infertility treatment.


Subject(s)
Azoospermia , Infertility, Male , Child , Male , Humans , Testis , Spermatogonia , Semen , Spermatogenesis , Infertility, Male/therapy
4.
J Vet Diagn Invest ; 34(6): 1032-1034, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36184940

ABSTRACT

A 7-y-old, captive, intact female meerkat (Suricata suricatta) was presented with lethargy, decreased appetite, dyspnea, and distended abdomen. At autopsy, the right atrium was markedly dilated, and the right atrioventricular valve (RAV) was dysplastic with shortened or absent chordae tendineae and direct attachment of the valve to the papillary muscles, which, in turn, were fused and abnormally positioned. The right ventricle was considered to be hypertrophied. Also present were hydrothorax, ascites, atelectasis, and hepatic congestion. A diagnosis of RAV dysplasia was made. Histologic findings included hypertrophy of cardiomyocytes and marked centrilobular hepatic congestion and hemorrhage, which were consistent with right-sided heart failure.


Subject(s)
Chordae Tendineae , Heart Failure , Female , Animals , Chordae Tendineae/pathology , Tricuspid Valve , Heart Failure/veterinary , Autopsy/veterinary
5.
Cell Tissue Res ; 388(1): 195-210, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35102441

ABSTRACT

Gonocytes in the neonatal testis have male germline stem cell properties and as such have important potential applications in fertility preservation and regenerative medicine. Such applications require further studies aimed at increasing gonocyte numbers and evaluating their pluripotency in vitro. The objective of the present study was to test the effects of basic fibroblast growth factor (bFGF), glial cell line-derived neurotrophic factor (GDNF), and leukemia inhibitory factor (LIF) on in vitro propagation, colony formation, and expression of pluripotency markers of neonatal porcine gonocytes. Testis cells from 1-week-old piglets were cultured in basic media (DMEM + 15% FBS), supplemented with various concentrations of bFGF, GDNF, and LIF, either individually or in combinations, in a stepwise experimental design. Gonocytes and/or their colonies were evaluated every 7 days and the gonocyte- (DBA) and pluripotency-specific markers (POU5F1, SSEA-1, E-cadherin, and NANOG) assessed on day 28. Greatest gonocyte numbers and largest colonies were found in media supplemented with 10 ng/mL bFGF and 10 ng/mL bFGF + 100 ng/mL GDNF + 1500 U/mL LIF, respectively. The resultant gonocytes and colonies expressed both germ cell- and pluripotency-specific markers. These results shed light on the growth hormone requirements of porcine gonocytes for in vitro proliferation and colony formation.


Subject(s)
Fibroblast Growth Factor 2 , Glial Cell Line-Derived Neurotrophic Factor , Animals , Cell Proliferation , Cells, Cultured , Dietary Supplements , Fibroblast Growth Factor 2/pharmacology , Germ Cells , Glial Cell Line-Derived Neurotrophic Factor/pharmacology , Leukemia Inhibitory Factor/pharmacology , Male , Swine
6.
Animals (Basel) ; 13(1)2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36611737

ABSTRACT

Long-term culture of testicular tissue has important applications, including the preservation of fertility potential of prepubertal boys undergoing gonadotoxic cancer treatment. This study was designed to define optimal conditions for the long-term culture of neonatal porcine testicular tissue as an animal model for preadolescent individuals. Testes from 1 wk old donor piglets were used to examine the effects of tissue fragment size (~2, 4, 6, or 8 mg), preparation method (intact, semi-digested, or physically dispersed fragments), and serum source in the media (fetal bovine serum­FBS­or knockout serum replacement­KSR). Testicular fragments were examined weekly for 4 weeks for tissue integrity, seminiferous cord density and morphology, and gonocyte counts. Testicular tissue integrity was dependent on fragment size and preparation method, where the smallest size (2 mg, p < 0.05) and intact preparation method were advantageous (p < 0.05). Seminiferous cord density decreased over the culture period (p < 0.05). Although the relative number of gonocytes decreased over time for all sizes and methods (p < 0.01), smaller intact fragments (2 and 4 mg) had greater numbers of gonocytes (p < 0.05). Our findings suggest that intact or physically dispersed testicular fragments of the smallest size (2 mg) cultured in KSR-supplemented media could be effectively maintained in vitro for the duration of 4 weeks.

7.
Cells ; 10(7)2021 07 05.
Article in English | MEDLINE | ID: mdl-34359871

ABSTRACT

The creation of a testis organoid (artificial testis tissue) with sufficient resemblance to the complex form and function of the innate testis remains challenging, especially using non-rodent donor cells. Here, we report the generation of an organoid culture system with striking biomimicry of the native immature testis tissue, including vasculature. Using piglet testis cells as starting material, we optimized conditions for the formation of cell spheroids, followed by long-term culture in an air-liquid interface system. Both fresh and frozen-thawed cells were fully capable of self-reassembly into stable testis organoids consisting of tubular and interstitial compartments, with all major cell types and structural details expected in normal testis tissue. Surprisingly, our organoids also developed vascular structures; a phenomenon that has not been reported in any other culture system. In addition, germ cells do not decline over time, and Leydig cells release testosterone, hence providing a robust, tunable system for diverse basic and applied applications.


Subject(s)
Biomimetic Materials/pharmacology , Organoids/physiology , Testis/blood supply , Animals , Cell Count , Cryopreservation , Leydig Cells/cytology , Leydig Cells/drug effects , Luteinizing Hormone/metabolism , Male , Neovascularization, Physiologic/drug effects , Organ Specificity , Organoids/cytology , Organoids/drug effects , Organoids/ultrastructure , Swine , Testis/cytology , Testis/ultrastructure , Testosterone/metabolism
8.
Biol Reprod ; 104(5): 942-961, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33550399

ABSTRACT

Spermatogenic failure is believed to be a major cause of male infertility. The establishment of a testis organoid model would facilitate the study of such pathological mechanisms and open the possibility of male fertility preservation. Because of the complex structures and cellular events occurring within the testis, the establishment of a compartmentalized testis organoid with a complete spermatogenic cycle remains a challenge in all species. Since the late 20th century, a great variety of scaffold-based and scaffold-free testis cell culture systems have been established to recapitulate de novo testis organogenesis and in vitro spermatogenesis. The utilization of the hydrogel scaffolds provides a 3D microenvironment for testis cell growth and development, facilitating the reconstruction of de novo testis tissue-like structures and spermatogenic differentiation. Using a combination of different strategies, including the use of various scaffolding biomaterials, the incorporation of the living cells with high self-assembling capacity, and the integration of the advanced fabrication techniques, a scaffold-based testis organoid with a compartmentalized structure that supports in vitro spermatogenesis may be achieved. This article briefly reviews the current progress in the development of scaffold-based testis organoids while focusing on the scaffolding biomaterials (hydrogels), cell sources, and scaffolding approaches. Key challenges in current organoid studies are also discussed along with recommendations for future research.


Subject(s)
Mammals/physiology , Organoids/cytology , Testis/cytology , Animals , Humans , Male
9.
Microbiol Immunol ; 61(8): 318-327, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28675506

ABSTRACT

Unlike for serotype II feline coronaviruses (FCoV II), the cellular receptor for serotype I FCoV (FCoV I), the most prevalent FCoV serotype, is unknown. To provide a platform for assessing the pattern by which FCoV I attaches to its host receptor(s), HEK293 cell lines that stably express the ectodomains of the spike (S) proteins derived from a FCoV I feline enteric coronavirus strain UU7 (FECV UU7) and a feline infectious peritonitis virus strain UU4 (FIPV UU4) were established. Using the recombinant S proteins as probes to perform S protein affinity histochemistry in paraffin-embedded tissues, although no tissue or enteric binding of FECV UU7 S protein was detected, it was found that by immunohistochemistry that the tissue distribution of FIPV UU4 S protein-bound cells correlated with that of FIPV antigen-positive cells and lesions associated with FIP and that the affinity binding of FIPV UU4 S protein on macrophages was not affected by enzymatic removal of host cell-surface sialic acid with neuraminidase. These findings suggest that a factor(s) other than sialic acid contribute(s) to the macrophage tropism of FIPV strain UU4. This approach allowed obtaining more information about both virus-host cell interactions and the biological characteristics of the unidentified cellular receptor for FCoV I.


Subject(s)
Coronavirus, Feline/metabolism , Receptors, Virus/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Viral Tropism/physiology , Virus Attachment , Animals , Cats , Cell Line , HEK293 Cells , Host-Pathogen Interactions/physiology , Humans , Macrophages/virology , N-Acetylneuraminic Acid/chemistry , Protein Binding/genetics , Protein Binding/physiology , Serogroup , Spike Glycoprotein, Coronavirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...