Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Int J Mol Sci ; 25(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38928045

ABSTRACT

Mutations have driven the evolution and development of new variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with potential implications for increased transmissibility, disease severity and vaccine escape among others. Genome sequencing is a technique that allows scientists to read the genetic code of an organism and has become a powerful tool for studying emerging infectious diseases. Here, we conducted a cross-sectional study in selected districts of the Eastern Province of Zambia, from November 2021 to February 2022. We analyzed SARS-CoV-2 samples (n = 76) using high-throughput sequencing. A total of 4097 mutations were identified in 69 SARS-CoV-2 genomes with 47% (1925/4097) of the mutations occurring in the spike protein. We identified 83 unique amino acid mutations in the spike protein of the seven Omicron sublineages (BA.1, BA.1.1, BA.1.14, BA.1.18, BA.1.21, BA.2, BA.2.23 and XT). Of these, 43.4% (36/83) were present in the receptor binding domain, while 14.5% (12/83) were in the receptor binding motif. While we identified a potential recombinant XT strain, the highly transmissible BA.2 sublineage was more predominant (40.8%). We observed the substitution of other variants with the Omicron strain in the Eastern Province. This work shows the importance of pandemic preparedness and the need to monitor disease in the general population.


Subject(s)
COVID-19 , Genome, Viral , Mutation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Zambia/epidemiology , Humans , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , COVID-19/virology , COVID-19/epidemiology , Spike Glycoprotein, Coronavirus/genetics , Cross-Sectional Studies , Retrospective Studies , Phylogeny , Genomics/methods , High-Throughput Nucleotide Sequencing/methods
2.
Antibiotics (Basel) ; 13(5)2024 May 20.
Article in English | MEDLINE | ID: mdl-38786195

ABSTRACT

Antimicrobial resistance (AMR) among Escherichia coli from food animals is a rising problem, and heavy antimicrobial use in poultry is a contributing factor. In Zambia, studies linking poultry-associated AMR and antibiotic use (AMU) are rare. This study aimed to investigate commercial and medium-/small-scale poultry farmers' usage of antimicrobials based on a questionnaire survey in ten districts of Zambia. In addition, the study characterized extended-spectrum ß-lactamase (ESBL)-producing E. coli isolates obtained from poultry in the same districts. Data regarding knowledge and usage of antimicrobials were collected from commercial and medium-/small-scale poultry farmers using a pre-tested structured questionnaire. At the same time, cloacal samples were collected and analyzed. One hundred and fifty E. coli isolates were tested for antimicrobial susceptibility using eight antibiotic classes. The isolates were further screened for ESBL production by streaking them on cefotaxime (CTX)-supplemented MacConkey agar, then subjecting them to sequencing on a NextSeq. The questionnaire survey showed that more medium-/small-scale than commercial poultry farmers used antimicrobials (OR = 7.70, 95% CI = 2.88-20.61) but less prescriptions (OR = 0.02, 95% CI = 0.00-0.08). Susceptibility testing revealed that resistance was highest to ampicillin (128/148, 86.5%) and tetracycline (101/136, 74.3%) and that the prevalence of multidrug resistance (MDR) (28/30, 93.3%) was high. Whole-genome sequencing (WGS) of eight (8/30, 26.7%) isolates with CTX Minimum Inhibitory Concentration (MIC) ≥ 4 µg/mL revealed the presence of ESBL-encoding genes blaCTX-M-14, blaCTX-M-55, and blaTEM. WGS also detected other AMR genes for quinolones, aminoglycosides, phenicols, tetracycline, macrolides, and folate-pathway antagonists. Altogether, the questionnaire survey results showed a higher proportion of AMU and lower prescription usage among medium-/small-scale farmers. In addition, our results emphasize the circulation of ESBL-producing E. coli strains with associated MDR. It is critical to educate farmers about AMR risks and to encourage responsible usage of antimicrobials. Furthermore, there is a need to strengthen regulations limiting access to antimicrobials. Finally, there is a need to establish a one health system to guide public health response.

3.
PLoS One ; 19(4): e0302053, 2024.
Article in English | MEDLINE | ID: mdl-38625961

ABSTRACT

Increased antimicrobial resistance (AMR) among bacteria underscores the need to strengthen AMR surveillance and promote data-based prescribing. To evaluate trends and associations between antimicrobial usage (AMU) and AMR, we explored a dataset of 34,672 bacterial isolates collected between 2015 and 2020 from clinical samples at the University Teaching Hospital (UTH) in Lusaka, Zambia. The most frequently isolated species were Escherichia coli (4,986/34,672; 14.4%), Staphylococcus aureus (3,941/34,672; 11.4%), and Klebsiella pneumoniae (3,796/34,672; 10.9%). Of the 16 drugs (eight classes) tested, only amikacin and imipenem showed good (> 50%) antimicrobial activity against both E. coli and K. pneumoniae, while nitrofurantoin was effective only in E. coli. Furthermore, 38.8% (1,934/4,980) of E. coli and 52.4% (2,079/3,791) of K. pneumoniae isolates displayed multidrug resistance (MDR) patterns on antimicrobial susceptibility tests. Among S. aureus isolates, 44.6% (973/2,181) were classified as methicillin-resistant (MRSA). Notably, all the MRSA exhibited MDR patterns. The annual hospital AMR rates varied over time, while there was a weak positive relationship (r = 0.38, 95% CI = 0.11-0.60) between the monthly use of third-generation cephalosporins (3GCs) and 3GC resistance among Enterobacterales. Overall, the results revealed high AMR rates that fluctuated over time, with a weak positive relationship between 3GC use and resistance. To our knowledge, this is the first report to evaluate the association between AMU and AMR in Zambia. Our results highlight the need to strengthen antimicrobial stewardship programs and optimize AMU in hospital settings.


Subject(s)
Anti-Bacterial Agents , Anti-Infective Agents , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Escherichia coli , Zambia/epidemiology , Staphylococcus aureus , Drug Resistance, Bacterial , Anti-Infective Agents/pharmacology , Hospitals , Klebsiella pneumoniae , Referral and Consultation , Microbial Sensitivity Tests
4.
Pathogens ; 12(10)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37887715

ABSTRACT

Rotavirus is a major cause of diarrhea globally in animals and young children under 5 years old. Here, molecular detection and genetic characterization of porcine rotavirus in smallholder and commercial pig farms in the Lusaka Province of Zambia were conducted. Screening of 148 stool samples by RT-PCR targeting the VP6 gene revealed a prevalence of 22.9% (34/148). Further testing of VP6-positive samples with VP7-specific primers produced 12 positives, which were then Sanger-sequenced. BLASTn of the VP7 positives showed sequence similarity to porcine and human rotavirus strains with identities ranging from 87.5% to 97.1%. By next-generation sequencing, the full-length genetic constellation of the representative strains RVA/pig-wt/ZMB/LSK0137 and RVA/pig-wt/ZMB/LSK0147 were determined. Genotyping of these strains revealed a known Wa-like genetic backbone, and their genetic constellations were G4-P[6]-I5-R1-C1-M1-A8-N1-T1-E1-H1 and G9-P[13]-I5-R1-C1-M1-A8-N1-T1-E1-H1, respectively. Phylogenetic analysis revealed that these two viruses might have their ancestral origin from pigs, though some of their gene segments were related to human strains. The study shows evidence of reassortment and possible interspecies transmission between pigs and humans in Zambia. Therefore, the "One Health" surveillance approach for rotavirus A in animals and humans is recommended to inform the design of effective control measures.

5.
Sci Rep ; 13(1): 18165, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37875565

ABSTRACT

Mosquitoes interact with various organisms in the environment, and female mosquitoes in particular serve as vectors that directly transmit a number of microorganisms to humans and animals by blood-sucking. Comprehensive analysis of mosquito-borne viruses has led to the understanding of the existence of diverse viral species and to the identification of zoonotic arboviruses responsible for significant outbreaks and epidemics. In the present study on mosquito-borne bunyaviruses we employed a broad-spectrum RT-PCR approach and identified eighteen different additional species in the Phenuiviridae family and also a number of related but unclassified bunyaviruses in mosquitoes collected in Zambia. The entire RNA genome segments of the newly identified viruses were further analyzed by RNA sequencing with a ribonuclease R (RNase R) treatment to reduce host-derived RNAs and enrich viral RNAs, taking advantage of the dsRNA panhandle structure of the bunyavirus genome. All three or four genome segments were identified in eight bunyavirus species. Furthermore, L segments of three different novel viruses related to the Leishbunyaviridae were found in mosquitoes together with genes from the suspected host, the Crithidia parasite. In summary, our virus detection approach using a combination of broad-spectrum RT-PCR and RNA sequencing analysis with a simple virus enrichment method allowed the discovery of novel bunyaviruses. The diversity of bunyaviruses is still expanding and studies on this will allow a better understanding of the ecology of hematophagous mosquitoes.


Subject(s)
Arboviruses , Culicidae , Orthobunyavirus , RNA Viruses , Animals , Humans , Female , Mosquito Vectors , Orthobunyavirus/genetics , RNA Viruses/genetics , Arboviruses/genetics
6.
Res Vet Sci ; 164: 105030, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37788548

ABSTRACT

We describe the genetic diversity and phylogenetic relationships of Mycobacterium bovis, isolated from cattle in Malawi. Deletion analysis, spoligotyping, and MIRU-VNTR typing were used to genotype the isolates. Combined with a larger dataset from neighboring countries, the overall M. bovis diversity in Southern Africa was contextualized. From the southern and northern regions of Malawi, 24 isolates were confirmed as M. bovis. We pooled data for the central region (60 isolates) from our recent publication to conceptualize the genetic and phylogenetic relationships of M. bovis in Malawi. European 1 was the dominant M. bovis clonal complex, with 10 unique spoligotype patterns, and SB0131 was ubiquitous. High genetic diversity, a low clustering rate, and many singletons, coupled with a low mutation transmission index, infer a low level of recent transmission, and suggest an endemic status of bovine tuberculosis (bTB) in Malawi. M. bovis isolates from Zambia, Mozambique, and South Africa were genetically related to Malawian isolates, whereas Tanzanian isolates were distantly related. The diversity and phylogenetic analysis suggest earlier introductions and maintenance of M. bovis by constant reinfection from reservoir animals. These findings are fundamental to understanding the source and route of infection in order to establish alternative management strategies for bTB.


Subject(s)
Cattle Diseases , Mycobacterium bovis , Tuberculosis, Bovine , Animals , Cattle , Mycobacterium bovis/genetics , Malawi/epidemiology , Phylogeny , Genetic Variation , Tuberculosis, Bovine/microbiology , Genotype , Minisatellite Repeats , Bacterial Typing Techniques/veterinary , Cattle Diseases/genetics
7.
Antibiotics (Basel) ; 12(9)2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37760717

ABSTRACT

Escherichia coli (E. coli), a major foodborne disease-causing pathogen found in raw cow milk, has even far more reaching public health ramifications as it encodes for antimicrobial resistance (AMR). This study aimed to identify multidrug-resistant (MDR) E. coli from raw cow's milk and evaluate their antimicrobial-resistant profiles. In total, 418 pooled raw cow milk samples were collected from milk collection centers and analysed using standard culture methods to isolate E. coli. Antimicrobial Susceptibility Testing (AST) was conducted using the Kirby Bauer disk diffusion method and PCR was used to identify cefotaxime (CTX) resistant genes. Overall isolation of E. coli was 51.2% (214/418) with MDR observed in 21% (45/214) of isolates across different antibiotic combinations. Resistance was observed towards ampicillin (107/214, 50%), tetracycline (86/214, 40.1%), trimethoprim/sulfamethoxazole (61/214, 28.5%), and amoxicillin/clavulanic acid (CTX) (50/214, 23.4%). Notably, 15% (32/214) resistance to CTX was observed, while 12.6% (27/214) exhibited resistance to imipenem. The blaCTX-M and blaTEM genes were detected in CTX-resistant isolates. The findings of MDR E. coli that harbour blaCTX-M and blaTEM genes in raw cow's milk indicate serious public health risks for consumers.

8.
Antibiotics (Basel) ; 12(7)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37508222

ABSTRACT

The emergence of pre-extensively drug-resistant tuberculosis (pre-XDR-TB) is a threat to TB control programs in developing countries such as Zambia. Studies in Zambia have applied molecular techniques to understand drug-resistance-associated mutations, circulating lineages and transmission patterns of multi-drug-resistant (MDR) Mycobacterium tuberculosis. However, none has reported genotypes and mutations associated with pre-XDR TB. This study characterized 63 drug-resistant M. tuberculosis strains from the University Teaching Hospital between 2018 and 2019 using targeted gene sequencing and conveniently selected 50 strains for whole genome sequencing. Sixty strains had resistance mutations associated to MDR, one polyresistant, and two rifampicin resistant. Among MDR strains, seven percent (4/60) had mutations associated with pre-XDR-TB. While four, one and nine strains had mutations associated with ethionamide, para-amino-salicylic acid and streptomycin resistances, respectively. All 50 strains belonged to lineage 4 with the predominant sub-lineage 4.3.4.2.1 (38%). Three of four pre-XDR strains belonged to sub-lineage 4.3.4.2.1. Sub-lineage 4.3.4.2.1 strains were less clustered when compared to sub-lineages L4.9.1 and L4.3.4.1 based on single nucleotide polymorphism differences. The finding that resistances to second-line drugs have emerged among MDR-TB is a threat to TB control. Hence, the study recommends a strengthened routine drug susceptibility testing for second-line TB drugs to stop the progression of pre-XDR to XDR-TB and improve patient treatment outcomes.

9.
Microorganisms ; 11(1)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36677492

ABSTRACT

Relapsing fever (RF) is an arthropod-borne disease caused by Borrelia spirochete, which is one of the major public health concerns in endemic regions including Africa. However, information on Borrelia spirochetes is limited in Zambia. Here, we investigate the Borrelia spirochetes harbored by Ornithodoros ticks in Zambian National Parks. We analyzed 182 DNA samples pooled from 886 Ornithodoros ticks. Of these, 43 tested positive, and their sequence revealed that the ticks harbored both Old and New World RF borreliae. This research presents the first evidence of Old-World RF borreliae in Zambia. The New World RF borreliae detected herein differed from the Candidatus Borrelia fainii previously reported in Zambia and were closely related to the pathogenic Borrelia sp. VS4 identified in Tanzania. Additionally, Borrelia theileri was recently reported in Zambia. Hence, at least four different Borrelia species occur in Zambia, and the organisms causing relapsing fever there might be more complex than previously thought. We empirically confirmed that real-time PCR with TaqMan minor groove binder probes accurately and simultaneously detected both Old and New World RF. In this manner, they could facilitate quantitative analyses of both types of RF borreliae. Subsequent investigations should endeavor to isolate the aforementioned Borrelia spp. and perform serosurveys on patients with RF.

10.
Arch Virol ; 168(2): 61, 2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36631547

ABSTRACT

Although rabies is endemic in Malawi, there have been no studies in which rabies virus was systematically investigated and characterized in multiple animal hosts in that country. In order to provide molecular epidemiological data on rabies virus in Malawi, 683 suspected rabies case reports from 2008 to 2021 were examined, and 46 (dog = 40, cow = 5, and cat = 1) viable rabies-positive brain samples archived at the Central Veterinary Laboratory (CVL), Lilongwe, Malawi, were analyzed genetically. The results showed an increase in the submission of brain samples from 2008 to 2010, with the highest number of submissions observed in 2020. Of the 683 case reports analyzed for the period under review, 38.1% (260/683) (CI: 34.44 - 41.84) were confirmed by direct fluorescent antibody test. Among the confirmed cases, 65.4% (170/260) (CI: 59.23 - 71.09) were canine rabies. Further, phylogenetic analysis revealed that sequences from different animal hosts clustered together within the Africa 1b lineage, suggesting that the strains circulating in livestock are similar to those in domestic dogs. This finding supports the hypothesis that canine rabies is spilling over to livestock and emphasizes the need for further studies to provide data for effective control of rabies in Malawi.


Subject(s)
Dog Diseases , Rabies virus , Rabies , Female , Cattle , Animals , Dogs , Rabies virus/genetics , Rabies/epidemiology , Rabies/veterinary , Phylogeny , Malawi/epidemiology , Molecular Epidemiology , Dog Diseases/epidemiology , Livestock
11.
Pathogens ; 11(11)2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36422600

ABSTRACT

The epidemiology of Rift Valley fever (RVF) is poorly understood in Malawi. Here, a cross-sectional study was conducted (March-June 2020) to investigate the seroprevalence and potential risk factors of RVF virus (RVFV) in cattle, goats, and sheep in three ecological zones of Malawi. A total of 1523 serum samples were tested for anti-RVFV IgG and IgM antibodies by ELISA. Additionally, a questionnaire survey was used to assess potential RVF risk factors. The overall seroprevalence was 17.14% (261/1523; 95% CI = 15.33-19.11) for individual livestock and 33.24% (120/361; 95% CI = 28.18-38.11) for the livestock herd. Seroprevalence was significantly high in sheep (25.68%, 95% CI = 19.31-33.26) compared with cattle (21.35%, 95% CI = 18.74-24.22) and goats (7.72%, 95% CI = 5.72-10.34), (p = 0.047). At the individual livestock level, the risk was elevated in female livestock (OR: 1.74, 95% CI = 1.08-12.82) (p = 0.016), while at the herd level, areas receiving approximately 1001-1500 mm of rainfall (OR: 2.47, 95% CI = 1.14-5.37) (p = 0.022), areas of rainfall amount greater than approximately 1600 mm (OR: 2.239, 95% CI = 1.07-8.82) (p = 0.023), and mixed species herds (OR: 10.410, 95% CI = 3.04-35.59) (p = 0.001), were significant risk factors. The detection of IgM antibodies confirmed active circulation of RVFV in Malawi. Therefore, monitoring of RVF in animals, humans, and vectors using a "One Health" approach, along with community sensitization among the high-risk populations, could help mitigate the threat posed by this zoonotic disease in Malawi.

12.
Virology ; 575: 10-19, 2022 10.
Article in English | MEDLINE | ID: mdl-35987079

ABSTRACT

Nelson Bay orthoreovirus (NBV) is an emerging bat-borne virus and causes respiratory tract infections in humans sporadically. Over the last two decades, several strains genetically related to NBV were isolated from humans and various bat species, predominantly in Southeast Asia (SEA), suggesting a high prevalence of the NBV species in this region. In this study, an orthoreovirus (ORV) belonging to the NBV species was isolated from Indonesian fruit bats' feces, tentatively named Paguyaman orthoreovirus (PgORV). Serological studies revealed that 81.2% (108/133) of Indonesian fruit bats sera had neutralizing antibodies against PgORV. Whole-genome sequencing and phylogenetic analysis of PgORV suggested the occurrence of past reassortments with other NBV strains isolated in SEA, indicating the dispersal and circulation of NBV species among bats in this region. Intranasal PgORV inoculation of laboratory mice caused severe pneumonia. Our study characterized PgORV's unique genetic background and highlighted the potential risk of PgORV-related diseases in Indonesia.


Subject(s)
Chiroptera , Orthoreovirus , Animals , Antibodies, Neutralizing , Humans , Indonesia/epidemiology , Mice , Orthoreovirus/genetics , Phylogeny
13.
PLoS Negl Trop Dis ; 16(6): e0010420, 2022 06.
Article in English | MEDLINE | ID: mdl-35653390

ABSTRACT

Rift valley fever (RVF) is a mosquito-borne disease of animals and humans. Although RVF outbreaks are usually reported at 5-15-year intervals in sub-Saharan Africa, Zambia has experienced an unusually long inter-epizootic/-epidemic period of more than three decades. However, serological evidence of RVF virus (RVFV) infection in domestic ruminants during this period underscores the need for comprehensive investigation of the mechanisms of virus perpetuation and disease emergence. Mosquitoes (n = 16,778) captured from eight of the ten provinces of Zambia between April 2014 and May 2019 were pooled (n = 961) and screened for RVFV genome by a pan-phlebo RT-PCR assay. Aedes mosquito pools (n = 85) were further screened by nested RT-PCR assay. Sera from sheep (n = 13), goats (n = 259) and wild ungulates (n = 285) were screened for RVFV antibodies by ELISA while genome detection in pooled sera (n = 276) from domestic (n = 248) and wild ungulates (n = 37) was performed by real-time RT-PCR assay. To examine the association between the long inter-epizootic period and climatic variables, we examined El Niño-Southern Oscillation indices, precipitation anomalies, and normalized difference vegetation index. We then derived RVF risk maps by exploring climatic variables that would favor emergence of primary RVFV vectors. While no RVFV genome could be detected in pooled mosquito and serum samples, seroprevalence was significantly high (OR = 8.13, 95% CI [4.63-14.25]) in wild ungulates (33.7%; 96/285) compared to domestic ruminants (5.6%; 16/272). Retrospective analysis of RVF epizootics in Zambia showed a positive correlation between anomalous precipitation (La Niña) and disease emergence. On risk mapping, whilst northern and eastern parts of the country were at high risk, domestic ruminant population density was low (< 21 animals/km2) in these areas compared to low risk areas (>21 animals/km2). Besides evidence of silent circulation of RVFV and the risk of disease emergence in some areas, wildlife may play a role in the maintenance of RVFV in Zambia.


Subject(s)
Culicidae , Rift Valley Fever , Rift Valley fever virus , Animals , Antibodies, Viral , Disease Outbreaks/veterinary , Mosquito Vectors , Real-Time Polymerase Chain Reaction , Retrospective Studies , Rift Valley fever virus/genetics , Ruminants , Seroepidemiologic Studies , Sheep , Zambia/epidemiology
14.
iScience ; 25(4): 104122, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35402872

ABSTRACT

The amino acid residue at position 333 of the rabies virus (RABV) glycoprotein (G333) is a major determinant of RABV pathogenicity. Virulent RABV strains possess Arg333, whereas the attenuated strain HEP-Flury (HEP) possesses Glu333. To investigate the potential attenuation mechanism dependent on a single amino acid at G333, comparative analysis was performed between HEP and HEP333R mutant with Arg333. We examined their respective tropism for astrocytes and the subsequent immune responses in astrocytes. Virus replication and subsequent interferon (IFN) responses in astrocytes infected with HEP were increased compared with HEP333R both in vitro and in vivo. Furthermore, involvement of IFN in the avirulency of HEP was demonstrated in IFN-receptor knockout mice. These results indicate that Glu333 contributes to RABV attenuation by determining the ability of the virus to infect astrocytes and stimulate subsequent IFN responses.

15.
Emerg Infect Dis ; 28(4): 888-890, 2022 04.
Article in English | MEDLINE | ID: mdl-35318934

ABSTRACT

Leishmaniases are neglected tropical diseases of humans and animals. We detected Leishmania infantum in 3 mixed-breed dogs in Zambia that had no travel history outside the country. Our findings suggest presence of and probable emergence of leishmaniasis in Zambia, indicating the need for physicians and veterinarians to consider the disease during diagnosis.


Subject(s)
Leishmania infantum , Leishmaniasis , Animals , Dogs , Leishmaniasis/veterinary , Neglected Diseases , Probability , Zambia/epidemiology
16.
PLoS Negl Trop Dis ; 16(2): e0010193, 2022 02.
Article in English | MEDLINE | ID: mdl-35120135

ABSTRACT

BACKGROUND: Although vector-borne zoonotic diseases are a major public health threat globally, they are usually neglected, especially among resource-constrained countries, including those in sub-Saharan Africa. This scoping review examined the current knowledge and identified research gaps of vector-borne zoonotic pathogens in Zambia. METHODS AND FINDINGS: Major scientific databases (Web of Science, PubMed, Scopus, Google Scholar, CABI, Scientific Information Database (SID)) were searched for articles describing vector-borne (mosquitoes, ticks, fleas and tsetse flies) zoonotic pathogens in Zambia. Several mosquito-borne arboviruses have been reported including Yellow fever, Ntaya, Mayaro, Dengue, Zika, West Nile, Chikungunya, Sindbis, and Rift Valley fever viruses. Flea-borne zoonotic pathogens reported include Yersinia pestis and Rickettsia felis. Trypanosoma sp. was the only tsetse fly-borne pathogen identified. Further, tick-borne zoonotic pathogens reported included Crimean-Congo Haemorrhagic fever virus, Rickettsia sp., Anaplasma sp., Ehrlichia sp., Borrelia sp., and Coxiella burnetii. CONCLUSIONS: This study revealed the presence of many vector-borne zoonotic pathogens circulating in vectors and animals in Zambia. Though reports of human clinical cases were limited, several serological studies provided considerable evidence of zoonotic transmission of vector-borne pathogens in humans. However, the disease burden in humans attributable to vector-borne zoonotic infections could not be ascertained from the available reports and this precludes the formulation of national policies that could help in the control and mitigation of the impact of these diseases in Zambia. Therefore, there is an urgent need to scale-up "One Health" research in emerging and re-emerging infectious diseases to enable the country to prepare for future epidemics, including pandemics.


Subject(s)
Communicable Diseases, Emerging , Vector Borne Diseases/epidemiology , Zoonoses/epidemiology , Animals , Arthropod Vectors , Bacteria , Humans , One Health , Trypanosoma , Viruses , Zambia/epidemiology
17.
FEMS Microbiol Lett ; 368(21-24)2022 02 12.
Article in English | MEDLINE | ID: mdl-35030252

ABSTRACT

Multidrug-resistant (MDR) Escherichia coli in food animals such as chickens is an emerging public health concern in Zambia. Additionally, the country's high demand for poultry products necessitates further investigation into the link between poultry and human MDR E. coli. Twenty cefotaxime-resistant E. coli isolates collected from poultry in Lusaka, Zambia, were screened for multidrug resistance and sequenced on MiSeq and MinION platforms. Genomes were assembled de novo and compared with 36 previously reported cefotaxime-resistant E. coli isolates from inpatients at the University Teaching Hospital, Lusaka. All (20/20, 100%) poultry isolates exhibited resistance to ampicillin, chloramphenicol and doxycycline. Phylogenetic analysis and hierarchical clustering showed a high degree of genetic relatedness between E. coli O17:H18-ST69 from poultry and humans. The E. coli O17:H18-ST69 clone accounted for 4/20 (20%) poultry- and 9/36 (25%) human-associated isolates that shared two plasmids harboring 14 antimicrobial resistance (AMR) genes. However, comparison analysis showed that the isolates also had other AMR plasmids distinct for each niche. Our results suggested clonal transmission of MDR E. coli between poultry and humans, with the potential acquisition of niche-specific AMR plasmids. Thus, the control of MDR E. coli requires a One Health approach involving both human and animal health sectors.


Subject(s)
Escherichia coli Infections , Escherichia coli , Animals , Anti-Bacterial Agents/pharmacology , Chickens , Drug Resistance, Multiple, Bacterial/genetics , Escherichia coli Infections/epidemiology , Escherichia coli Infections/veterinary , Humans , Microbial Sensitivity Tests , Phylogeny , Poultry , Zambia/epidemiology
18.
Transbound Emerg Dis ; 69(3): 1659-1662, 2022 May.
Article in English | MEDLINE | ID: mdl-33900037

ABSTRACT

Mycobacterium bovis (M. bovis) causes tuberculosis in mammals and is a major public health threat worldwide. While M. bovis has been reported in humans, domestic and wild ruminants at the human-wildlife-livestock interface area in Zambia, there is paucity of information on the role of primates as reservoir hosts. We screened seven wild chacma baboons (Papio ursinus) for tuberculosis at the human-wildlife interface area in Lochinvar National Park in the Kafue Flats, Zambia. Following necropsy, lung tissue and associated lymph nodes with tuberculous-like lesions collected from four adult male baboons were prepared for Mycobacterium culture. The isolates were initially typed using the Mycobacterium tuberculosis complex-discrimination multiplex PCR assay and further characterized by spoligotyping and 26-loci MIRU-VNTR. Mycobacteria were isolated from all four animals and identified as M. bovis by PCR. On Spoligotyping, all isolates belonged to SB 0120 spoligotype, which is similar to what was previously reported in humans, cattle and Kafue lechwe antelopes in Kafue Flats ecosystem. Furthermore, on MIRU-VNTR typing, the baboon isolates clustered with cattle and Kafue lechwe isolates from the same catchment area. This finding intimates probable cross-species transmission of M. bovis in the Kafue Flats ecosystem. Due to the close interaction of baboons and humans at interface areas in Zambia, our results have potential implications for public health. Equally, this finding raises concerns for conservation.


Subject(s)
Antelopes , Cattle Diseases , Mycobacterium bovis , Tuberculosis, Bovine , Tuberculosis , Animals , Animals, Wild/microbiology , Cattle , Ecosystem , Humans , Male , Minisatellite Repeats , Papio ursinus , Tuberculosis/epidemiology , Tuberculosis/microbiology , Tuberculosis/veterinary , Tuberculosis, Bovine/microbiology , Zambia/epidemiology
19.
Emerg Microbes Infect ; 10(1): 2169-2172, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34736356

ABSTRACT

While evidence suggests presence of HEV infection in humans in Zambia, currently, there is no information on its occurrence in domestic pigs. Here, we investigated the presence of HEV antibodies and genome in domestic pigs in Zambia. Sera (n = 484) from domestic pigs were screened for antibodies against HEV by ELISA while genome detection in fecal (n = 25) and liver (n = 100) samples from slaughter pigs was conducted using nested RT-PCR assay. Overall, seroprevalence was 47.7% (231/484) while zoonotic genotype 3 HEV RNA was detected in 16.0% (20/125) of slaughtered pigs. This is the first report to highlight occurrence of HEV infection in domestic pigs in Zambia. This finding suggests possible contamination of the pork supply chain. Moreover, there is a potential risk of zoonotic transmission of HEV to abattoir workers, pig farmers and handlers.


Subject(s)
Hepatitis E virus/immunology , Hepatitis E/veterinary , Swine Diseases/virology , Abattoirs , Animals , Hepatitis Antibodies/blood , Hepatitis E/blood , Hepatitis E/epidemiology , Hepatitis E/virology , Hepatitis E virus/genetics , Hepatitis E virus/isolation & purification , Seroepidemiologic Studies , Sus scrofa/blood , Sus scrofa/virology , Swine , Swine Diseases/blood , Swine Diseases/epidemiology , Zambia/epidemiology
20.
Pathogens ; 10(10)2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34684256

ABSTRACT

Rickettsial pathogens are amongst the emerging and re-emerging vector-borne zoonoses of public health importance. Though traditionally considered to be transmitted by ixodid ticks, the role of argasid ticks as vectors of these pathogens is increasingly being recognized. While bat-feeding (Ornithodoros faini) and chicken-feeding (Argas walkerae) argasid ticks have been shown to harbor Rickettsia pathogens in Zambia, there are currently no reports of Rickettsia infection in southern Africa from warthog-feeding (Phacochoerus africanus) soft ticks, particularly Ornithodoros moubata and Ornithodoros porcinus. Our study sought to expand on the existing knowledge on the role of soft ticks in the epidemiology of Rickettsia species through screening for Rickettsia pathogens in warthog burrow-dwelling soft ticks from two national parks in Zambia. The tick species from which Rickettsia were detected in this study were identified as Ornithodoros porcinus, and an overall minimal Rickettsia infection rate of 19.8% (32/162) was observed. All of the sequenced Rickettsia were identified as Rickettsia lusitaniae based on nucleotide sequence similarity and phylogenetic analysis of the citrate synthase (gltA) and 17kDa common antigen (htrA) genes. Utilizing all of the gltA (n = 10) and htrA (n = 12) nucleotide sequences obtained in this study, BLAST analysis showed 100% nucleotide similarity to Rickettsia lusitaniae. Phylogenetic analysis revealed that all of the Zambian gltA and htrA gene sequences could be grouped with those of Rickettsia lusitaniae obtained in various parts of the world. Our data suggest that Rickettsia lusitaniae has a wider geographic and vector range, enhancing to our understanding of Rickettsia lusitaniae epidemiology in sub-Saharan Africa.

SELECTION OF CITATIONS
SEARCH DETAIL
...