Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Biotechnol Appl Biochem ; 69(6): 2673-2685, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35092091

ABSTRACT

Trichoderma reesei superoxide dismutase (TrSOD) is a well-characterized enzyme being stable between 30 and 90°C for 1 h with activity at pH between 2.6 and 9.0. This work aimed to clone, express, purify, and evaluate the protective effect antioxidant of this enzyme on skin cells when fused to transactivator of transcription (TAT) protein transduction domain of HIV-1 and abalone (Ab) peptides to allow cell penetration. TrSOD, TAT-TrSOD-Yfp (fused to yellow fluorescent protein), and Ab-TrSOD were expressed in E. coli and purified as soluble proteins. The cytotoxicity of the enzymes, at the concentrations of 1, 3, and 6 µmol/L, was evaluated for a period of 24 and 48 h of incubation, with no cytotoxic effect on 3T3 fibroblasts. The 3T3 cells were exposed to the oxidant agent tert-butyl hydroperoxide and evaluated for reactive oxygen species (ROS) generation, in the presence or not of the recombinant enzymes. TAT-TrSOD-Yfp was able to decrease the generation of ROS by 15% when used in the concentrations of 3 and 6 µmol/L in comparison to the control, but there was no difference in relation to the effect of TrSOD. Ab-TrSOD, when compared to TrSOD, promoted a decrease in the formation of ROS of 19% and 14% at the concentrations of 1 and 6 µmol/L, respectively, indicating that this recombinant form was more effective in reducing oxidative stress compared to SOD without the cell-penetrating peptide (CPP). Together, these results indicate that the fusion of SOD with these CPP increased the antioxidant capacity of fibroblasts, identified by the reduction in the generation of ROS. In addition, such molecules, in the concentrations initially used, were not toxic to the cells, opening perspectives for the development of products for antioxidant protection of the skin that may have therapeutic and cosmetic application.


Subject(s)
Antioxidants , Trans-Activators , Mice , Animals , Reactive Oxygen Species/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Trans-Activators/metabolism , Escherichia coli/metabolism , Superoxide Dismutase/metabolism , Oxidative Stress , Peptides/pharmacology , Peptides/metabolism
2.
Front Cell Dev Biol ; 10: 1012637, 2022.
Article in English | MEDLINE | ID: mdl-36712971

ABSTRACT

Introduction: In skin traumas, such as burns, epidermal homeostasis is affected, often requiring clinical approaches. Different therapeutic strategies can be used including transplantation, besides the use of synthetic or natural materials with allogeneic cells. In this context, tissue engineering is an essential tool for skin regeneration, and using mesenchymal stem cells (MSC) from the umbilical cord appears to be a promising strategy in regenerative medicine due to its renewal and differentiation potential and hypo immunogenicity. We evaluated the transdifferentiation of MSC from umbilical cord into keratinocytes in three-dimensional (3D) in vitro skin models, using dermal equivalents composed by type I collagen with dermal fibroblasts and a commercial porcine skin decellularized matrix, both cultured at air-liquid interface (ALI). Methods: The expression of epidermal proteins cytokeratins (CK) 5, 14 and 10, involucrin and filaggrin was investigated by real-time PCR and immunofluorescence, in addition to the activity of epidermal kallikreins (KLK) on the hydrolysis of fluorogenic substrates. Results and discussion: The cultivation of MSCs with differentiation medium on these dermal supports resulted in organotypic cultures characterized by the expression of the epidermal markers CK5, CK14, CK10 and involucrin, mainly on the 7th day of culture, and filaggrin at 10th day in ALI. Also, there was a 3-fold increase in the KLK activity in the epidermal equivalents composed by MSC induced to differentiate into keratinocytes compared to the control (MSC cultivated in the proliferation medium). Specifically, the use of collagen and fibroblasts resulted in a more organized MSC-based organotypic culture in comparison to the decellularized matrix. Despite the non-typical epithelium structure formed by MSC onto dermal equivalents, the expression of important epidermal markers in addition to the paracrine effects of these cells in skin may indicate its potential use to produce skin-based substitutes.

SELECTION OF CITATIONS
SEARCH DETAIL