Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Biotechnol ; 19(1): 84, 2019 11 29.
Article in English | MEDLINE | ID: mdl-31783836

ABSTRACT

BACKGROUND: Simultaneous advances in gene editing, T cell engineering and biotechnology currently provide an opportunity for rapid progress in medicine. The approval of chimeric antigen receptor (CAR) T cell therapies by the US Food and Drug Administration (FDA) and the European Commission have generated substantial momentum for these first-in-class therapies to be used in patients with B cell malignancies. MAIN BODY: Considerable efforts focus on improved outcomes and reduced side effects of the newly approved therapies. Using innovative strategies, researchers aim to extend CAR T cell use to tackle difficulties inherent in solid tumors. Efforts are underway to broaden the applications of CAR T cells, and the strategy has been successful in chronic viral infections and preclinical models of autoimmunity. Research is in progress to generate "off-the-shelf" CAR T cells, an advance, which would greatly increase patient availability and reduce treatment cost. CONCLUSIONS: In this thematic review, we highlight advances that may help develop genetically engineered cells into a new category of medical therapies.


Subject(s)
Immunotherapy, Adoptive , Neoplasms/therapy , T-Lymphocytes/immunology , Animals , Humans , Neoplasms/genetics , Neoplasms/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/immunology
2.
Sci Transl Med ; 11(482)2019 03 06.
Article in English | MEDLINE | ID: mdl-30842314

ABSTRACT

The failure of anti-CD20 antibody (Rituximab) as therapy for lupus may be attributed to the transient and incomplete B cell depletion achieved in clinical trials. Here, using an alternative approach, we report that complete and sustained CD19+ B cell depletion is a highly effective therapy in lupus models. CD8+ T cells expressing CD19-targeted chimeric antigen receptors (CARs) persistently depleted CD19+ B cells, eliminated autoantibody production, reversed disease manifestations in target organs, and extended life spans well beyond normal in the (NZB × NZW) F1 and MRL fas/fas mouse models of lupus. CAR T cells were active for 1 year in vivo and were enriched in the CD44+CD62L+ T cell subset. Adoptively transferred splenic T cells from CAR T cell-treated mice depleted CD19+ B cells and reduced disease in naive autoimmune mice, indicating that disease control was cell-mediated. Sustained B cell depletion with CD19-targeted CAR T cell immunotherapy is a stable and effective strategy to treat murine lupus, and its effectiveness should be explored in clinical trials for lupus.


Subject(s)
Antigens, CD19/metabolism , B-Lymphocytes/immunology , Immunotherapy, Adoptive , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/therapy , Lymphocyte Depletion , T-Lymphocytes/metabolism , Animals , Female , Lupus Erythematosus, Systemic/blood , Mice , Phenotype , Proteome/metabolism , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...