Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biophys J ; 122(23): 4567-4581, 2023 12 05.
Article in English | MEDLINE | ID: mdl-37924208

ABSTRACT

Solution scattering techniques, such as small- and wide-angle X-ray scattering (SWAXS), provide valuable insights into the structure and dynamics of biological macromolecules in solution. In this study, we present an approach to accurately predict solution X-ray scattering profiles at wide angles from atomic models by generating high-resolution electron density maps. Our method accounts for the excluded volume of bulk solvent by calculating unique adjusted atomic volumes directly from the atomic coordinates. This approach eliminates the need for one of the free fitting parameters commonly used in existing algorithms, resulting in improved accuracy of the calculated SWAXS profile. An implicit model of the hydration shell is generated that uses the form factor of water. Two parameters, namely the bulk solvent density and the mean hydration shell contrast, are adjusted to best fit the data. Results using eight publicly available SWAXS profiles show high-quality fits to the data. In each case, the optimized parameter values show small adjustments demonstrating that the default values are close to the true solution. Disabling parameter optimization produces significantly more accurate predicted scattering profiles compared to the leading software. The algorithm is computationally efficient, comparable to the leading software and up to 10 times faster for large molecules. The algorithm is encoded in a command line script called denss.pdb2mrc.py and is available open source as part of the DENSS v1.7.0 software package. In addition to improving the ability to compare atomic models to experimental SWAXS data, these developments pave the way for increasing the accuracy of modeling algorithms using SWAXS data and decreasing the risk of overfitting.


Subject(s)
Electrons , Water , X-Ray Diffraction , Scattering, Small Angle , Solvents/chemistry , Water/chemistry
2.
bioRxiv ; 2023 Jun 03.
Article in English | MEDLINE | ID: mdl-37398274

ABSTRACT

Solution scattering techniques, such as small and wide-angle X-ray scattering (SWAXS), provide valuable insights into the structure and dynamics of biological macromolecules in solution. In this study, we present an approach to accurately predict solution X-ray scattering profiles at wide angles from atomic models by generating high-resolution electron density maps. Our method accounts for the excluded volume of bulk solvent by calculating unique adjusted atomic volumes directly from the atomic coordinates. This approach eliminates the need for a free fitting parameter commonly used in existing algorithms, resulting in improved accuracy of the calculated SWAXS profile. An implicit model of the hydration shell is generated which uses the form factor of water. Two parameters, namely the bulk solvent density and the mean hydration shell contrast, are adjusted to best fit the data. Results using eight publicly available SWAXS profiles show high quality fits to the data. In each case, the optimized parameter values show small adjustments demonstrating that the default values are close to the true solution. Disabling parameter optimization results in a significant improvement of the calculated scattering profiles compared to the leading software. The algorithm is computationally efficient, showing more than tenfold reduction in execution time compared to the leading software. The algorithm is encoded in a command line script called denss.pdb2mrc.py and is available open source as part of the DENSS v1.7.0 software package (https://github.com/tdgrant1/denss). In addition to improving the ability to compare atomic models to experimental SWAXS data, these developments pave the way for increasing the accuracy of modeling algorithms utilizing SWAXS data while decreasing the risk of overfitting.

3.
Ultrason Imaging ; 41(6): 319-335, 2019 11.
Article in English | MEDLINE | ID: mdl-31570083

ABSTRACT

Photoacoustic imaging (PAI) is an emerging biomedical imaging technique that utilizes a combination of light and ultrasound to detect photoabsorbers embedded within tissues. While the clinical utility of PAI has been widely explored for several applications, limitations in light penetration and detector sensitivity have restricted these studies to mostly superficial sites. Given the importance of PA signal generation and detection on light delivery and ultrasound detector frequency, there is an ongoing effort to optimize these parameters to enhance photoabsorber detection at increased depths. With this in mind, in this study we examined performance benchmarks of a commercially available PAI/ultrasound linear array system when using different imaging frequencies and light delivery schemes. A modified light fiber jacket providing focused light delivery (FLD) at the center of the probe was compared with the built-in fiber optics lining the length of the probe. Studies were performed in vitro to compare performance characteristics such as imaging resolution, maximum imaging depth, and sensitivity to varying hematocrit concentration for each frequency and light delivery method. Monte Carlo simulations of each light delivery method revealed increased light penetration with FLD. In tissue-mimicking phantoms, vascular channels used to simulate blood vessels could be visualized at a depth of 2.4 cm when lowering imaging frequency and utilizing FLD. Imaging at lower frequencies with FLD also enabled enhanced detection of varying hematocrit concentration levels at increased depths, although lateral imaging resolution was reduced. Finally, a proof of concept in vivo probe comparison study in a mouse tumor model provided supportive evidence of our in vitro results. Collectively, our findings show that adjusting imaging frequency and applying FLD can be a straightforward approach for improving PAI performance.


Subject(s)
Photoacoustic Techniques/instrumentation , Photoacoustic Techniques/methods , Animals , Disease Models, Animal , Fiber Optic Technology , Head and Neck Neoplasms/diagnostic imaging , Hematocrit , Humans , Image Processing, Computer-Assisted , Lasers, Solid-State , Mice , Monte Carlo Method , Neoplasms, Experimental/diagnostic imaging , Phantoms, Imaging , Ultrasonography
SELECTION OF CITATIONS
SEARCH DETAIL
...