Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Nat Commun ; 15(1): 5558, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977672

ABSTRACT

Deletion of the maternal UBE3A allele causes Angelman syndrome (AS); because paternal UBE3A is epigenetically silenced by a long non-coding antisense (UBE3A-ATS) in neurons, this nearly eliminates UBE3A protein in the brain. Reactivating paternal UBE3A holds promise for treating AS. We previously showed topoisomerase inhibitors can reactivate paternal UBE3A, but their therapeutic challenges prompted our search for small molecule unsilencers with a different mechanism of action. Here, we found that (S)-PHA533533 acts through a novel mechanism to significantly increase paternal Ube3a mRNA and UBE3A protein levels while downregulating Ube3a-ATS in primary neurons derived from AS model mice. Furthermore, peripheral delivery of (S)-PHA533533 in AS model mice induces widespread neuronal UBE3A expression. Finally, we show that (S)-PHA533533 unsilences paternal UBE3A in AS patient-derived neurons, highlighting its translational potential. Our findings provide a lead for developing a small molecule treatment for AS that could be safe, non-invasively delivered, and capable of brain-wide unsilencing of paternal UBE3A.


Subject(s)
Angelman Syndrome , Disease Models, Animal , Neurons , Ubiquitin-Protein Ligases , Angelman Syndrome/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Animals , Mice , Neurons/metabolism , Humans , Male , Female , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , Brain/metabolism
2.
Eur Neuropsychopharmacol ; 86: 35-42, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38917772

ABSTRACT

Many individuals with autism spectrum disorder (ASD) experience various degrees of impairment in social interaction and communication, restricted, repetitive behaviours, interests/activities. These impairments make a significant contribution to poorer everyday adaptive functioning. Yet, there are no pharmacological therapies to effectively treat the core symptoms of ASD. Since symptoms of ASD likely emerge from a complex interplay of vulnerabilities, environmental factors and compensatory mechanisms during the early developmental period, pharmacological interventions arguably would have the greatest impact to improve long-term outcomes when implemented at a young age. It is essential therefore, that clinical development programmes of investigational drugs in ASD include the paediatric population early on in clinical trials. Such trials need to offer the prospect of direct benefit (PDB) for participants. In most cases in drug development this prospect is supported by evidence of efficacy in adults. However, the effectiveness of treatment approaches may be age-dependent, so that clinical trials in adults may not provide sufficient evidence for a PDB in children. In this white paper, we consolidate recommendations from regulatory guidelines, as well as advice from the Food and Drug Administration, USA (FDA) and the Committee for Human Medicinal Products (CHMP) consultations on various development programmes on: 1) elements to support a PDB to participants in early paediatric clinical trials in ASD, including single-gene neurodevelopment disorders, 2) aspects of study design to allow for a PDB. This white paper is intended to be complementary to existing regulatory guidelines in guiding industry and academic sponsors in their conduct of early paediatric clinical trials in ASD.

3.
Elife ; 132024 Jan 19.
Article in English | MEDLINE | ID: mdl-38240312

ABSTRACT

Out of the several hundred copies of rRNA genes arranged in the nucleolar organizing regions (NOR) of the five human acrocentric chromosomes, ~50% remain transcriptionally inactive. NOR-associated sequences and epigenetic modifications contribute to the differential expression of rRNAs. However, the mechanism(s) controlling the dosage of active versus inactive rRNA genes within each NOR in mammals is yet to be determined. We have discovered a family of ncRNAs, SNULs (Single NUcleolus Localized RNA), which form constrained sub-nucleolar territories on individual NORs and influence rRNA expression. Individual members of the SNULs monoallelically associate with specific NOR-containing chromosomes. SNULs share sequence similarity to pre-rRNA and localize in the sub-nucleolar compartment with pre-rRNA. Finally, SNULs control rRNA expression by influencing pre-rRNA sorting to the DFC compartment and pre-rRNA processing. Our study discovered a novel class of ncRNAs influencing rRNA expression by forming constrained nucleolar territories on individual NORs.


Subject(s)
Nucleolus Organizer Region , RNA Precursors , Humans , Animals , Nucleolus Organizer Region/genetics , Nucleolus Organizer Region/metabolism , RNA Precursors/genetics , RNA Precursors/metabolism , Cell Nucleolus/genetics , Cell Nucleolus/metabolism , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , Chromosomes, Human/metabolism , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Mammals/genetics
4.
bioRxiv ; 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37790331

ABSTRACT

Duplication 15q (dup15q) syndrome is the most common genetic cause of autism spectrum disorder (ASD). Due to a higher genetic and phenotypic homogeneity compared to idiopathic autism, dup15q syndrome provides a well-defined setting to investigate ASD mechanisms. Previous bulk gene expression studies identified shared molecular changes in ASD. However, how cell type specific changes compare across different autism subtypes and how they change during development is largely unknown. In this study, we used single cell and single nucleus mRNA sequencing of dup15q cortical organoids from patient iPSCs, as well as post-mortem patient brain samples. We find cell-type specific dysregulated programs that underlie dup15q pathogenesis, which we validate by spatial resolved transcriptomics using brain tissue samples. We find degraded identity and vulnerability of deep-layer neurons in fetal stage organoids and highlight increased molecular burden of postmortem upper-layer neurons implicated in synaptic signaling, a finding shared between idiopathic ASD and dup15q syndrome. Gene co-expression network analysis of organoid and postmortem excitatory neurons uncovers modules enriched with autism risk genes. Organoid developmental modules were involved in transcription regulation via chromatin remodeling, while postmortem modules were associated with synaptic transmission and plasticity. The findings reveal a shifting landscape of ASD cellular vulnerability during brain development.

5.
bioRxiv ; 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37693591

ABSTRACT

Angelman Syndrome (AS) and Prader-Willi Syndrome (PWS), two distinct neurodevelopmental disorders, result from loss of expression from imprinted genes in the chromosome 15q11-13 locus most commonly caused by a megabase-scale deletion on either the maternal or paternal allele, respectively. Each occurs at an approximate incidence of 1/15,000 to 1/30,000 live births and has a range of debilitating phenotypes. Patient-derived induced pluripotent stem cells (iPSCs) have been valuable tools to understand human-relevant gene regulation at this locus and have contributed to the development of therapeutic approaches for AS. Nonetheless, gaps remain in our understanding of how these deletions contribute to dysregulation and phenotypes of AS and PWS. Variability across cell lines due to donor differences, reprogramming methods, and genetic background make it challenging to fill these gaps in knowledge without substantially increasing the number of cell lines used in the analyses. Isogenic cell lines that differ only by the genetic mutation causing the disease can ease this burden without requiring such a large number of cell lines. Here, we describe the development of isogenic human embryonic stem cell (hESC) lines modeling the most common genetic subtypes of AS and PWS. These lines allow for a facile interrogation of allele-specific gene regulation at the chromosome 15q11-q13 locus. Additionally, these lines are an important resource to identify and test targeted therapeutic approaches for patients with AS and PWS.

6.
Stem Cell Reports ; 18(4): 884-898, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36898382

ABSTRACT

Chromosome 15q11-q13 duplication syndrome (Dup15q) is a neurodevelopmental disorder caused by maternal duplications of this region. Autism and epilepsy are key features of Dup15q. UBE3A, which encodes an E3 ubiquitin ligase, is likely a major driver of Dup15q because UBE3A is the only imprinted gene expressed solely from the maternal allele. Nevertheless, the exact role of UBE3A has not been determined. To establish whether UBE3A overexpression is required for Dup15q neuronal deficits, we generated an isogenic control line for a Dup15q patient-derived induced pluripotent stem cell line. Dup15q neurons exhibited hyperexcitability compared with control neurons, and this phenotype was generally prevented by normalizing UBE3A levels using antisense oligonucleotides. Overexpression of UBE3A resulted in a profile similar to that of Dup15q neurons except for synaptic phenotypes. These results indicate that UBE3A overexpression is necessary for most Dup15q cellular phenotypes but also suggest a role for other genes in the duplicated region.


Subject(s)
Autistic Disorder , Chromosome Aberrations , Chromosomes, Human, Pair 15 , Ubiquitin-Protein Ligases , Humans , Autistic Disorder/genetics , Autistic Disorder/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats , Intellectual Disability/genetics , Intellectual Disability/metabolism , Neurons/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
7.
Biol Psychiatry ; 90(11): 756-765, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34538422

ABSTRACT

BACKGROUND: Chromosome 15q11-q13 duplication syndrome (Dup15q) is a neurogenetic disorder caused by duplications of the maternal copy of this region. In addition to hypotonia, motor deficits, and language impairments, patients with Dup15q commonly meet the criteria for autism spectrum disorder and have a high prevalence of seizures. It is known from mouse models that synaptic impairments are a strong component of Dup15q pathophysiology; however, cellular phenotypes that relate to seizures are less clear. The development of patient-derived induced pluripotent stem cells provides a unique opportunity to study human neurons with the exact genetic disruptions that cause Dup15q. METHODS: Here, we explored electrophysiological phenotypes in induced pluripotent stem cell-derived neurons from 4 patients with Dup15q compared with 6 unaffected control subjects, 1 patient with a 15q11-q13 paternal duplication, and 3 patients with Angelman syndrome. RESULTS: We identified several properties of Dup15q neurons that could contribute to neuronal hyperexcitability and seizure susceptibility. Compared with control neurons, Dup15q neurons had increased excitatory synaptic event frequency and amplitude, increased density of dendritic protrusions, increased action potential firing, and decreased inhibitory synaptic transmission. Dup15q neurons also showed impairments in activity-dependent synaptic plasticity and homeostatic synaptic scaling. Finally, Dup15q neurons showed an increased frequency of spontaneous action potential firing compared with control neurons, in part due to disruption of KCNQ2 potassium channels. CONCLUSIONS: Together, these data point to multiple electrophysiological mechanisms of hyperexcitability that may provide new targets for the treatment of seizures and other phenotypes associated with Dup15q.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Induced Pluripotent Stem Cells , Animals , Autism Spectrum Disorder/genetics , Humans , Mice , Neurons , Phenotype
8.
Cell Rep Med ; 2(8): 100377, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34467252

ABSTRACT

New research from Pandya and colleagues1 identifies PEG10 as a UBE3A-regulated protein that may underlie pathophysiology in Angelman syndrome neurons. PEG10 is a secreted protein, and this work suggests that it may be a potential biomarker for Angelman syndrome therapeutics under development.


Subject(s)
Angelman Syndrome , Ubiquitin-Protein Ligases , Angelman Syndrome/genetics , Animals , Biomarkers , Disease Models, Animal , Neurons , Ubiquitin-Protein Ligases/genetics
9.
Brain Behav ; 11(1): e01937, 2021 01.
Article in English | MEDLINE | ID: mdl-33151040

ABSTRACT

INTRODUCTION: Angelman syndrome (AS) is a neurodevelopmental disorder characterized by motor deficits, seizures, some autistic-like behaviors, and severe impairment of speech. A dysfunction of the maternally imprinted UBE3A gene, coupled with a functional yet silenced paternal copy, results in AS. Although studies of transgenic mouse models have revealed a great deal about neural populations and rescue timeframes for specific features of AS, these studies have largely failed to examine intermediate phenotypes that contribute to the profound communicative disabilities associated with AS. METHODS: Here, we use a variety of tasks, including assessments of rapid auditory processing and social communication. Expressive vocalizations were directly assessed and correlated against other core behavioral measures (motor, social, acoustic perception) to model putative influences on communication. RESULTS: AS mice displayed the characteristic phenotypes associated with Angelman syndrome (i.e., social and motor deficits), as well as marginal enhancements in rapid auditory processing ability. Our characterization of adult ultrasonic vocalizations further showed that AS mice produce fewer vocalizations and vocalized for a shorter amount of time when compared to controls. Additionally, a strong correlation between motor indices and ultrasonic vocalization output was shown, suggesting that the motor impairments in AS may contribute heavily to communication impairments. CONCLUSION: In summary, the combination of motor deficits, social impairment, marginal rapid auditory enhancements, and altered ultrasonic vocalizations reported in a mouse model of AS clearly parallel the human symptoms of the disorder. This mouse model offers a novel route to interrogate the underlying genetic, physiologic, and behavioral influences on the under-studied topic of impaired communication in AS.


Subject(s)
Angelman Syndrome , Angelman Syndrome/genetics , Animals , Communication , Disease Models, Animal , Mice , Mice, Transgenic , Ubiquitin-Protein Ligases
10.
Mol Psychiatry ; 26(7): 3625-3633, 2021 07.
Article in English | MEDLINE | ID: mdl-32792659

ABSTRACT

Angelman Syndrome (AS) is a severe neurodevelopmental disorder due to impaired expression of UBE3A in neurons. There are several genetic mechanisms that impair UBE3A expression, but they differ in how neighboring genes on chromosome 15 at 15q11-q13 are affected. There is evidence that different genetic subtypes present with different clinical severity, but a systematic quantitative investigation is lacking. Here we analyze natural history data on a large sample of individuals with AS (n = 250, 848 assessments), including clinical scales that quantify development of motor, cognitive, and language skills (Bayley Scales of Infant Development, Third Edition; Preschool Language Scale, Fourth Edition), adaptive behavior (Vineland Adaptive Behavioral Scales, Second Edition), and AS-specific symptoms (AS Clinical Severity Scale). We found that clinical severity, as captured by these scales, differs between genetic subtypes: individuals with UBE3A pathogenic variants and imprinting defects (IPD) are less affected than individuals with uniparental paternal disomy (UPD); of those with UBE3A pathogenic variants, individuals with truncating mutations are more impaired than those with missense mutations. Individuals with a deletion that encompasses UBE3A and other genes are most impaired, but in contrast to previous work, we found little evidence for an influence of deletion length (class I vs. II) on severity of manifestations. The results of this systematic analysis highlight the relevance of genomic regions beyond UBE3A as contributing factors in the AS phenotype, and provide important information for the development of new therapies for AS. More generally, this work exemplifies how increasing genetic irregularities are reflected in clinical severity.


Subject(s)
Angelman Syndrome , Angelman Syndrome/genetics , Chromosomes, Human, Pair 15 , Genomic Imprinting/genetics , Genotype , Humans , Phenotype , Ubiquitin-Protein Ligases/genetics
11.
Hum Mol Genet ; 29(19): 3285-3295, 2020 11 25.
Article in English | MEDLINE | ID: mdl-32977341

ABSTRACT

Prader-Willi syndrome (PWS) is characterized by neonatal hypotonia, developmental delay and hyperphagia/obesity. This disorder is caused by the absence of paternally expressed gene products from chromosome 15q11-q13. We previously demonstrated that knocking out ZNF274, a Kruppel-associated box-A-domain zinc finger protein capable of recruiting epigenetic machinery to deposit the H3K9me3 repressive histone modification, can activate expression from the normally silent maternal allele of SNORD116 in neurons derived from PWS induced pluripotent stem cells (iPSCs). However, ZNF274 has many other targets in the genome in addition to SNORD116. Depleting ZNF274 will surely affect the expression of other important genes and disrupt other pathways. Here, we used CRISPR/Cas9 to delete ZNF274 binding sites at the SNORD116 locus to determine whether activation of the maternal copy of SNORD116 could be achieved without altering ZNF274 protein levels. We obtained similar activation of gene expression from the normally silenced maternal allele in neurons derived from PWS iPSCs, compared with ZNF274 knockout, demonstrating that ZNF274 is directly involved in the repression of SNORD116. These results suggest that interfering with ZNF274 binding at the maternal SNORD116 locus is a potential therapeutic strategy for PWS.


Subject(s)
Induced Pluripotent Stem Cells/pathology , Kruppel-Like Transcription Factors/metabolism , Neurons/pathology , Prader-Willi Syndrome/pathology , RNA, Messenger, Stored/genetics , RNA, Small Nucleolar/genetics , Female , Humans , Induced Pluripotent Stem Cells/metabolism , Kruppel-Like Transcription Factors/genetics , Neurons/metabolism , Prader-Willi Syndrome/genetics , Prader-Willi Syndrome/metabolism
12.
Cell Chem Biol ; 27(12): 1510-1520.e6, 2020 12 17.
Article in English | MEDLINE | ID: mdl-32966807

ABSTRACT

Genetic aberrations of the UBE3A gene encoding the E3 ubiquitin ligase E6AP underlie the development of Angelman syndrome (AS). Approximately 10% of AS individuals harbor UBE3A genes with point mutations, frequently resulting in the expression of full-length E6AP variants with defective E3 activity. Since E6AP exists in two states, an inactive and an active one, we hypothesized that distinct small molecules can stabilize the active state and that such molecules may rescue the E3 activity of AS-derived E6AP variants. Therefore, we established an assay that allows identifying modulators of E6AP in a high-throughput format. We identified several compounds that not only stimulate wild-type E6AP but also rescue the E3 activity of certain E6AP variants. Moreover, by chemical cross-linking coupled to mass spectrometry we provide evidence that the compounds stabilize an active conformation of E6AP. Thus, these compounds represent potential lead structures for the design of drugs for AS treatment.


Subject(s)
Angelman Syndrome/genetics , Point Mutation , Small Molecule Libraries/pharmacology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Drug Design , Enzyme Activation/drug effects , Enzyme Stability/drug effects , Protein Conformation , Ubiquitin-Protein Ligases/chemistry
13.
Open Biol ; 10(9): 200195, 2020 09.
Article in English | MEDLINE | ID: mdl-32961075

ABSTRACT

Prader-Willi syndrome (PWS) is caused by the loss of function of the paternally inherited 15q11-q13 locus. This region is governed by genomic imprinting, a phenomenon in which genes are expressed exclusively from one parental allele. The genomic imprinting of the 15q11-q13 locus is established in the germline and is largely controlled by a bipartite imprinting centre. One part, termed the Prader-Willi syndrome imprinting center (PWS-IC), comprises a CpG island that is unmethylated on the paternal allele and methylated on the maternal allele. The second part, termed the Angelman syndrome imprinting centre, is required to silence the PWS_IC in the maternal germline. The loss of the paternal contribution of the imprinted 15q11-q13 locus most frequently occurs owing to a large deletion of the entire imprinted region but can also occur through maternal uniparental disomy or an imprinting defect. While PWS is considered a contiguous gene syndrome based on large-deletion and uniparental disomy patients, the lack of expression of only non-coding RNA transcripts from the SNURF-SNRPN/SNHG14 may be the primary cause of PWS. Patients with small atypical deletions of the paternal SNORD116 cluster alone appear to have most of the PWS related clinical phenotypes. The loss of the maternal contribution of the 15q11-q13 locus causes a separate and distinct condition called Angelman syndrome. Importantly, while much has been learned about the regulation and expression of genes and transcripts deriving from the 15q11-q13 locus, there remains much to be learned about how these genes and transcripts contribute at the molecular level to the clinical traits and developmental aspects of PWS that have been observed.


Subject(s)
Prader-Willi Syndrome/etiology , Prader-Willi Syndrome/therapy , Biomarkers , Chromosomes, Human, Pair 15 , Disease Management , Disease Susceptibility , Epigenesis, Genetic , Gene Expression Regulation , Genetic Association Studies , Genetic Loci , Genomic Imprinting , Humans , Phenotype , Prader-Willi Syndrome/diagnosis , RNA, Untranslated
14.
Hum Mol Genet ; 29(18): 3021-3031, 2020 11 04.
Article in English | MEDLINE | ID: mdl-32833011

ABSTRACT

Loss of UBE3A expression, a gene regulated by genomic imprinting, causes Angelman syndrome (AS), a rare neurodevelopmental disorder. The UBE3A gene encodes an E3 ubiquitin ligase with three known protein isoforms in humans. Studies in mouse suggest that the human isoforms may have differences in localization and neuronal function. A recent case study reported mild AS phenotypes in individuals lacking one specific isoform. Here we have used CRISPR/Cas9 to generate isogenic human embryonic stem cells (hESCs) that lack the individual protein isoforms. We demonstrate that isoform 1 accounts for the majority of UBE3A protein in hESCs and neurons. We also show that UBE3A predominantly localizes to the cytoplasm in both wild type and isoform-null cells. Finally, we show that neurons lacking isoform 1 display a less severe electrophysiological AS phenotype.


Subject(s)
Angelman Syndrome/genetics , Genetic Predisposition to Disease , Ubiquitin-Protein Ligases/genetics , Angelman Syndrome/pathology , Animals , Brain/metabolism , Brain/pathology , Disease Models, Animal , Electrophysiological Phenomena/genetics , Genomic Imprinting/genetics , Human Embryonic Stem Cells/metabolism , Human Embryonic Stem Cells/pathology , Humans , Mice , Neurons/metabolism , Neurons/pathology , Protein Isoforms/genetics
15.
Adv Neurobiol ; 25: 55-77, 2020.
Article in English | MEDLINE | ID: mdl-32578144

ABSTRACT

The chromosome 15q11-q13 region of the human genome is regulated by genomic imprinting, an epigenetic phenomenon in which genes are expressed exclusively from one parental allele. Several genes within the 15q11-q13 region are expressed exclusively from the paternally inherited chromosome 15. At least one gene UBE3A, shows exclusive expression of the maternal allele, but this allele-specific expression is restricted to neurons. The appropriate regulation of imprinted gene expression across chromosome 15q11-q13 has important implications for human disease. Three different neurodevelopmental disorders result from aberrant expression of imprinted genes in this region: Prader-Willi syndrome (PWS), Angelman syndrome (AS), and 15q duplication syndrome.


Subject(s)
Angelman Syndrome , Prader-Willi Syndrome , Angelman Syndrome/genetics , Chromosomes , Genomic Imprinting/genetics , Humans , Prader-Willi Syndrome/genetics
17.
Mol Autism ; 10: 29, 2019.
Article in English | MEDLINE | ID: mdl-31312421

ABSTRACT

Background: Duplications of 15q11.2-q13.1 (Dup15q syndrome), including the paternally imprinted gene UBE3A and three nonimprinted gamma-aminobutyric acid type-A (GABAA) receptor genes, are highly penetrant for neurodevelopmental disorders such as autism spectrum disorder (ASD). To guide targeted treatments of Dup15q syndrome and other forms of ASD, biomarkers are needed that reflect molecular mechanisms of pathology. We recently described a beta EEG phenotype of Dup15q syndrome, but it remains unknown which specific genes drive this phenotype. Methods: To test the hypothesis that UBE3A overexpression is not necessary for the beta EEG phenotype, we compared EEG from a reference cohort of children with Dup15q syndrome (n = 27) to (1) the pharmacological effects of the GABAA modulator midazolam (n = 12) on EEG from healthy adults, (2) EEG from typically developing (TD) children (n = 14), and (3) EEG from two children with duplications of paternal 15q (i.e., the UBE3A-silenced allele). Results: Peak beta power was significantly increased in the reference cohort relative to TD controls. Midazolam administration recapitulated the beta EEG phenotype in healthy adults with a similar peak frequency in central channels (f = 23.0 Hz) as Dup15q syndrome (f = 23.1 Hz). Both paternal Dup15q syndrome cases displayed beta power comparable to the reference cohort. Conclusions: Our results suggest a critical role for GABAergic transmission in the Dup15q syndrome beta EEG phenotype, which cannot be explained by UBE3A dysfunction alone. If this mechanism is confirmed, the phenotype may be used as a marker of GABAergic pathology in clinical trials for Dup15q syndrome.


Subject(s)
Biomarkers/metabolism , Electroencephalography , Intellectual Disability/diagnostic imaging , Adult , Child , Chromosome Aberrations , Chromosomes, Human, Pair 15 , Cohort Studies , Fathers , Female , Humans , Intellectual Disability/drug therapy , Male , Midazolam/administration & dosage , Midazolam/therapeutic use , Phenotype , Receptors, GABA-A/metabolism
18.
Proc Natl Acad Sci U S A ; 116(6): 2181-2186, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30674673

ABSTRACT

Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by the loss of function from the maternal allele of UBE3A, a gene encoding an E3 ubiquitin ligase. UBE3A is only expressed from the maternally inherited allele in mature human neurons due to tissue-specific genomic imprinting. Imprinted expression of UBE3A is restricted to neurons by expression of UBE3A antisense transcript (UBE3A-ATS) from the paternally inherited allele, which silences the paternal allele of UBE3A in cis However, the mechanism restricting UBE3A-ATS expression and UBE3A imprinting to neurons is not understood. We used CRISPR/Cas9-mediated genome editing to functionally define a bipartite boundary element critical for neuron-specific expression of UBE3A-ATS in humans. Removal of this element led to up-regulation of UBE3A-ATS without repressing paternal UBE3A However, increasing expression of UBE3A-ATS in the absence of the boundary element resulted in full repression of paternal UBE3A, demonstrating that UBE3A imprinting requires both the loss of function from the boundary element as well as the up-regulation of UBE3A-ATS These results suggest that manipulation of the competition between UBE3A-ATS and UBE3A may provide a potential therapeutic approach for AS.


Subject(s)
Chromatin/genetics , Genomic Imprinting , Neurons/metabolism , Ubiquitin-Protein Ligases/genetics , Angelman Syndrome/genetics , Binding Sites , Chromatin/metabolism , Epistasis, Genetic , Exons , Gene Expression , Gene Expression Regulation , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Protein Binding , RNA, Antisense , RNA, Long Noncoding , Sequence Deletion
19.
Mol Genet Genomic Med ; 6(2): 171-185, 2018 03.
Article in English | MEDLINE | ID: mdl-29271092

ABSTRACT

BACKGROUND: Genetic testing of children with autism spectrum disorder (ASD) is now standard in the clinical setting, with American College of Medical Genetics and Genomics (ACMGG) guidelines recommending microarray for all children, fragile X testing for boys and additional gene sequencing, including PTEN and MECP2, in appropriate patients. Increasingly, testing utilizing high throughput sequencing, including gene panels and whole exome sequencing, are offered as well. METHODS: We performed genetic testing including microarray, fragile X testing and targeted gene panel, consistently sequencing 161 genes associated with ASD risk, in a clinical population of 100 well characterized children with ASD. Frequency of rare variants identified in individual genes was compared with that reported in the Exome Aggregation Consortium (ExAC) database. RESULTS: We did not diagnose any conditions with complete penetrance for ASD; however, copy number variants believed to contribute to ASD risk were identified in 12%. Eleven children were found to have likely pathogenic variants on gene panel, yet, after careful analysis, none was considered likely causative of disease. KIRREL3 variants were identified in 6.7% of children compared to 2% in ExAC, suggesting a potential role for KIRREL3 variants in ASD risk. Children with KIRREL3 variants more often had minor facial dysmorphism and intellectual disability. We also observed an increase in rare variants in TSC2. However, analysis of variant data from the Simons Simplex Collection indicated that rare variants in TSC2 occur more commonly in specific racial/ethnic groups, which are more prevalent in our population than in the ExAC database. CONCLUSION: The yield of genetic testing including microarray, fragile X (boys) and targeted gene panel was 12%. Gene panel did not increase diagnostic yield; however, we found an increase in rare variants in KIRREL3. Our findings reinforce the need for racial/ethnic diversity in large-scale genomic databases used to identify variants that contribute to disease risk.


Subject(s)
Autism Spectrum Disorder/genetics , Genetic Testing/methods , Adolescent , Carrier Proteins/genetics , Carrier Proteins/physiology , Child , Child, Preschool , DNA Copy Number Variations/genetics , Ethnicity/genetics , Exome/genetics , Female , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Genomics , High-Throughput Nucleotide Sequencing/methods , Humans , Infant , Male , Membrane Proteins/genetics , Membrane Proteins/physiology
20.
Nat Commun ; 8: 15038, 2017 04 24.
Article in English | MEDLINE | ID: mdl-28436452

ABSTRACT

Angelman syndrome (AS) is a neurogenetic disorder caused by deletion of the maternally inherited UBE3A allele and is characterized by developmental delay, intellectual disability, ataxia, seizures and a happy affect. Here, we explored the underlying pathophysiology using induced pluripotent stem cell-derived neurons from AS patients and unaffected controls. AS-derived neurons showed impaired maturation of resting membrane potential and action potential firing, decreased synaptic activity and reduced synaptic plasticity. These patient-specific differences were mimicked by knocking out UBE3A using CRISPR/Cas9 or by knocking down UBE3A using antisense oligonucleotides. Importantly, these phenotypes could be rescued by pharmacologically unsilencing paternal UBE3A expression. Moreover, selective effects of UBE3A disruption at late stages of in vitro development suggest that changes in action potential firing and synaptic activity may be secondary to altered resting membrane potential. Our findings provide a cellular phenotype for investigating pathogenic mechanisms underlying AS and identifying novel therapeutic strategies.


Subject(s)
Action Potentials/physiology , Angelman Syndrome/pathology , Induced Pluripotent Stem Cells/physiology , Neurons/physiology , Action Potentials/genetics , Angelman Syndrome/genetics , Angelman Syndrome/metabolism , Cell Differentiation , Cells, Cultured , Female , Gene Knockout Techniques , Humans , Induced Pluripotent Stem Cells/metabolism , Male , Membrane Potentials/genetics , Membrane Potentials/physiology , Neuronal Plasticity/genetics , Neuronal Plasticity/physiology , Neurons/metabolism , Synaptic Transmission/genetics , Synaptic Transmission/physiology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...