Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Toxics ; 9(1)2021 Jan 09.
Article in English | MEDLINE | ID: mdl-33435272

ABSTRACT

Pyrethroid and neonicotinoid pesticides control an array of insect pests in leafy greens, but there are concerns about the off-site movement and potential water quality impacts of these chemicals. Effective on-farm management practices can eliminate aquatic toxicity and pesticides in runoff. This project evaluated an integrated vegetated treatment system (VTS), including the use of polyacrylamide (PAM), for minimizing the toxicity of imidacloprid and permethrin pesticides in runoff. The VTS incorporated a sediment trap to remove coarse particles, a grass-lined ditch with compost swales to remove suspended sediment and insecticides, and granulated activated carbon (GAC) or biochar to remove residual insecticides. Runoff was sampled throughout the VTS and analyzed for pesticide concentrations, and aquatic toxicity using the midge Chironomus dilutus and the amphipod Hyalella azteca. In simulated runoff experiments, the VTS reduced suspended sediment load by 88%, and imidacloprid and permethrin load by 97% and 99%, respectively. In runoff events from a conventionally grown lettuce field, suspended sediment load was reduced by 98%, and insecticide load by 99%. Toxicity was significantly reduced in approximately half of the simulated runoff events, and most of the lettuce runoff events. Integrated vegetated treatment systems that include components for treating soluble and hydrophobic pesticides are vital tools for reducing pesticide load and occurrence of pesticide-related toxicity.

2.
Physiol Biochem Zool ; 86(2): 224-32, 2013.
Article in English | MEDLINE | ID: mdl-23434782

ABSTRACT

Physiological tolerances play a key role in determining species distributions and abundance across a landscape, and understanding these tolerances can therefore be useful in predicting future changes in species distributions that might occur. Vertebrates possess several highly conserved physiological mechanisms for coping with environmental stressors, including the hormonal stress response that involves an endocrine cascade resulting in the increased production of glucocorticoids. We examined the function of this endocrine axis by assessing both baseline and acute stress-induced concentrations of corticosterone in larvae from eight natural breeding populations of Jefferson's salamander Ambystoma jeffersonianum. We surveyed individuals from each pond and also examined a variety of environmental pond parameters. We found that baseline and stress-induced corticosterone concentrations differed significantly among ponds. Population-level baseline corticosterone concentrations were negatively related to pH and positively related to nitrate, and stress-induced concentrations were again negatively related to pH, positively related to nitrate, and positively related to temperature. We followed the field survey with an outdoor mesocosm experiment in which we manipulated pH and again examined baseline and acute stress-induced corticosterone in A. jeffersonianum larvae. As in the field survey, we observed an increase in the baseline corticosterone concentration of individuals exposed to the lowest pH treatment (pH 5-5.8). Examining physiological indices using a combined approach of field surveys and experiments can be a powerful tool for trying to unravel the complexities of environmental impacts on species distributions.


Subject(s)
Corticosterone/metabolism , Glucocorticoids/metabolism , Hydrogen-Ion Concentration , Ponds/chemistry , Urodela/physiology , Animals , Larva/physiology , Maryland , Pennsylvania , Radioimmunoassay , Stress, Physiological , West Virginia
3.
Appl Environ Microbiol ; 72(5): 3771-3, 2006 May.
Article in English | MEDLINE | ID: mdl-16672533

ABSTRACT

Herpetofaunal Salmonella enterica serovars have not been fully examined in any U.S. region. Thirty-three Salmonella serovars were isolated from 156 samples from 34 species, all within Indiana County, Pennsylvania. Results suggest that herpetofaunas could potentially pose a threat to humans. Further understanding of Salmonella in herpetofaunas may prevent future human cases.


Subject(s)
Amphibians/microbiology , Reptiles/microbiology , Salmonella Infections, Animal/epidemiology , Salmonella enterica/classification , Salmonella enterica/isolation & purification , Animals , Pennsylvania , Salmonella Infections, Animal/microbiology , Salmonella enteritidis/isolation & purification , Salmonella typhimurium/isolation & purification , Serotyping
SELECTION OF CITATIONS
SEARCH DETAIL
...