Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nat Cancer ; 3(6): 681-695, 2022 06.
Article in English | MEDLINE | ID: mdl-35437317

ABSTRACT

Despite advances in precision medicine, the clinical prospects for patients with ovarian and uterine cancers have not substantially improved. Here, we analyzed genome-scale CRISPR-Cas9 loss-of-function screens across 851 human cancer cell lines and found that frequent overexpression of SLC34A2-encoding a phosphate importer-is correlated with sensitivity to loss of the phosphate exporter XPR1, both in vitro and in vivo. In patient-derived tumor samples, we observed frequent PAX8-dependent overexpression of SLC34A2, XPR1 copy number amplifications and XPR1 messenger RNA overexpression. Mechanistically, in SLC34A2-high cancer cell lines, genetic or pharmacologic inhibition of XPR1-dependent phosphate efflux leads to the toxic accumulation of intracellular phosphate. Finally, we show that XPR1 requires the novel partner protein KIDINS220 for proper cellular localization and activity, and that disruption of this protein complex results in acidic "vacuolar" structures preceding cell death. These data point to the XPR1-KIDINS220 complex and phosphate dysregulation as a therapeutic vulnerability in ovarian cancer.


Subject(s)
Membrane Proteins , Nerve Tissue Proteins , Ovarian Neoplasms , Female , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Phosphates/pharmacology , Receptors, G-Protein-Coupled/genetics , Receptors, Virus/genetics , Xenotropic and Polytropic Retrovirus Receptor/genetics , Xenotropic and Polytropic Retrovirus Receptor/metabolism
2.
Cancer Res ; 82(1): 130-141, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34548332

ABSTRACT

Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) are the standard-of-care treatment for EGFR-mutant non-small cell lung cancers (NSCLC). However, most patients develop acquired drug resistance to EGFR TKIs. HER3 is a unique pseudokinase member of the ERBB family that functions by dimerizing with other ERBB family members (EGFR and HER2) and is frequently overexpressed in EGFR-mutant NSCLC. Although EGFR TKI resistance mechanisms do not lead to alterations in HER3, we hypothesized that targeting HER3 might improve efficacy of EGFR TKI. HER3-DXd is an antibody-drug conjugate (ADC) comprised of HER3-targeting antibody linked to a topoisomerase I inhibitor currently in clinical development. In this study, we evaluated the efficacy of HER3-DXd across a series of EGFR inhibitor-resistant, patient-derived xenografts and observed it to be broadly effective in HER3-expressing cancers. We further developed a preclinical strategy to enhance the efficacy of HER3-DXd through osimertinib pretreatment, which increased membrane expression of HER3 and led to enhanced internalization and efficacy of HER3-DXd. The combination of osimertinib and HER3-DXd may be an effective treatment approach and should be evaluated in future clinical trials in EGFR-mutant NSCLC patients. SIGNIFICANCE: EGFR inhibition leads to increased HER3 membrane expression and promotes HER3-DXd ADC internalization and efficacy, supporting the clinical development of the EGFR inhibitor/HER3-DXd combination in EGFR-mutant lung cancer.See related commentary by Lim et al., p. 18.


Subject(s)
Antineoplastic Agents/therapeutic use , ErbB Receptors/antagonists & inhibitors , Immunoconjugates/metabolism , Receptor, ErbB-3/metabolism , Animals , Antineoplastic Agents/pharmacology , Apoptosis , Cell Culture Techniques , Cell Line, Tumor , Humans , Mice
3.
Sci Transl Med ; 13(609): eabb3738, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34516823

ABSTRACT

The clinical efficacy of epidermal growth factor receptor (EGFR)­targeted therapy in EGFR-mutant non­small cell lung cancer is limited by the development of drug resistance. One mechanism of EGFR inhibitor resistance occurs through amplification of the human growth factor receptor (MET) proto-oncogene, which bypasses EGFR to reactivate downstream signaling. Tumors exhibiting concurrent EGFR mutation and MET amplification are historically thought to be codependent on the activation of both oncogenes. Hence, patients whose tumors harbor both alterations are commonly treated with a combination of EGFR and MET tyrosine kinase inhibitors (TKIs). Here, we identify and characterize six patient-derived models of EGFR-mutant, MET-amplified lung cancer that have switched oncogene dependence to rely exclusively on MET activation for survival. We demonstrate in this MET-driven subset of EGFR TKI-refractory cancers that canonical EGFR downstream signaling was governed by MET, even in the presence of sustained mutant EGFR expression and activation. In these models, combined EGFR and MET inhibition did not result in greater efficacy in vitro or in vivo compared to single-agent MET inhibition. We further identified a reduced EGFR:MET mRNA expression stoichiometry as associated with MET oncogene dependence and single-agent MET TKI sensitivity. Tumors from 10 of 11 EGFR inhibitor­resistant EGFR-mutant, MET-amplified patients also exhibited a reduced EGFR:MET mRNA ratio. Our findings reveal that a subset of EGFR-mutant, MET-amplified lung cancers develop dependence on MET activation alone, suggesting that such patients could be treated with a single-agent MET TKI rather than the current standard-of-care EGFR and MET inhibitor combination regimens.


Subject(s)
ErbB Receptors , Lung Neoplasms , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , ErbB Receptors/genetics , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mutation/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
4.
Mol Cancer Ther ; 20(4): 641-654, 2021 04.
Article in English | MEDLINE | ID: mdl-33536188

ABSTRACT

RAS gene mutations are the most frequent oncogenic event in lung cancer. They activate multiple RAS-centric signaling networks among them the MAPK, PI3K, and RB pathways. Within the MAPK pathway, ERK1/2 proteins exert a bottleneck function for transmitting mitogenic signals and activating cytoplasmic and nuclear targets. In view of disappointing antitumor activity and toxicity of continuously applied MEK inhibitors in patients with KRAS-mutant lung cancer, research has recently focused on ERK1/2 proteins as therapeutic targets and on ERK inhibitors for their ability to prevent bypass and feedback pathway activation. Here, we show that intermittent application of the novel and selective ATP-competitive ERK1/2 inhibitor LY3214996 exerts single-agent activity in patient-derived xenograft (PDX) models of RAS-mutant lung cancer. Combination treatments were well tolerated and resulted in synergistic (ERKi plus PI3K/mTORi LY3023414) and additive (ERKi plus CDK4/6i abemaciclib) tumor growth inhibition in PDX models. Future clinical trials are required to investigate if intermittent ERK inhibitor-based treatment schedules can overcome toxicities observed with continuous MEK inhibition and-equally important-to identify biomarkers for patient stratification.


Subject(s)
Genes, ras/drug effects , Lung Neoplasms/drug therapy , Oncogenes/genetics , Protein Kinase Inhibitors/therapeutic use , Cell Line, Tumor , Humans , Lung Neoplasms/pathology , Protein Kinase Inhibitors/pharmacology
5.
Mol Oncol ; 15(1): 27-42, 2021 01.
Article in English | MEDLINE | ID: mdl-32191822

ABSTRACT

Small-cell lung cancer (SCLC) occurs infrequently in never/former light smokers. We sought to study this rare clinical subset through next-generation sequencing (NGS) and by characterizing a representative patient-derived model. We performed targeted NGS, as well as comprehensive pathological evaluation, in 11 never/former light smokers with clinically diagnosed SCLC. We established a patient-derived model from one such patient (DFCI168) harboring an NRASQ61K mutation and characterized the sensitivity of this model to MEK and TORC1/2 inhibitors. Despite the clinical diagnosis of SCLC, the majority (8/11) of cases were either of nonpulmonary origin or of mixed histology and included atypical carcinoid (n = 1), mixed non-small-cell lung carcinoma and SCLC (n = 4), unspecified poorly differentiated carcinoma (n = 1), or small-cell carcinoma from different origins (n = 2). RB1 and TP53 mutations were found in four and five cases, respectively. Predicted driver mutations were detected in EGFR (n = 2), NRAS (n = 1), KRAS (n = 1), BRCA1 (n = 1), and ATM (n = 1), and one case harbored a TMPRSS2-ERG fusion. DFCI168 (NRASQ61K ) exhibited marked sensitivity to MEK inhibitors in vitro and in vivo. The combination of MEK and mTORC1/2 inhibitors synergized to prevent compensatory mTOR activation, resulting in prolonged growth inhibition in this model and in three other NRAS mutant lung cancer cell lines. SCLC in never/former light smokers is rare and is potentially a distinct disease entity comprised of oncogenic driver mutation-harboring carcinomas morphologically and/or clinically mimicking SCLC. Comprehensive pathologic review integrated with genomic profiling is critical in refining the diagnosis and in identifying potential therapeutic options.


Subject(s)
Genetic Heterogeneity , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Molecular Targeted Therapy , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/pathology , Smokers , Aged , Animals , Base Sequence , Cell Line, Tumor , Cell Survival/drug effects , Drug Synergism , Female , GTP Phosphohydrolases/genetics , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/drug therapy , Male , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Membrane Proteins/genetics , Mice , Middle Aged , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/metabolism , Models, Biological , Mutation/genetics , Neurosecretory Systems/drug effects , Neurosecretory Systems/pathology , Phenotype , Protein Kinase Inhibitors/pharmacology , Signal Transduction , Small Cell Lung Carcinoma/diagnosis , Small Cell Lung Carcinoma/drug therapy
6.
Clin Cancer Res ; 26(15): 4072-4079, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32312893

ABSTRACT

PURPOSE: We pursued genomic analysis of an exceptional responder with non-small cell lung cancer (NSCLC) through a multi-platform effort to discover novel oncogenic targets. EXPERIMENTAL DESIGN: In this open-label, single-arm phase II study (NCT01829217), an enriched cohort of patients with advanced NSCLC was treated with the multi-kinase inhibitor sunitinib. The primary endpoint was objective response rate. Tissue was collected for multi-platform genomic analysis of responders, and a candidate oncogene was validated using in vitro models edited by CRISPR-Cas9. RESULTS: Of 13 patients enrolled, 1 patient (8%), a never smoker, had a partial response lasting 33 months. Genomic analysis of the responder identified no oncogenic variant using multi-platform DNA analysis including hotspot allelotyping, massively parallel hybrid-capture next-generation sequencing, and whole-exome sequencing. However, bulk RNA-sequencing (RNA-seq) revealed a novel fusion, TMEM87A-RASGRF1, with high overexpression of the fusion partners. RASGRF1 encodes a guanine exchange factor which activates RAS from GDP-RAS to GTP-RAS. Oncogenicity was demonstrated in NIH/3T3 models with intrinsic TMEM87A-RASGRF1 fusion. In addition, activation of MAPK was shown in PC9 models edited to express this fusion, although sensitivity to MAPK inhibition was seen without apparent sensitivity to sunitinib. CONCLUSIONS: Sunitinib exhibited limited activity in this enriched cohort of patients with advanced NSCLC. Nonetheless, we find that RNA-seq of exceptional responders represents a potentially underutilized opportunity to identify novel oncogenic targets including oncogenic activation of RASGRF1.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Membrane Proteins/metabolism , Oncogene Proteins, Fusion/metabolism , Sunitinib/pharmacology , ras-GRF1/metabolism , Aged , Carcinogenesis/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Female , High-Throughput Nucleotide Sequencing , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , MAP Kinase Signaling System/genetics , Male , Membrane Proteins/genetics , Middle Aged , Oncogene Proteins, Fusion/genetics , RNA-Seq , Sunitinib/therapeutic use , ras Proteins/genetics , ras-GRF1/genetics
7.
Cancer Cell ; 37(5): 705-719.e6, 2020 05 11.
Article in English | MEDLINE | ID: mdl-32243838

ABSTRACT

While KRAS mutations are common in non-small cell lung cancer (NSCLC), effective treatments are lacking. Here, we report that half of KRAS-mutant NSCLCs aberrantly express the homeobox protein HOXC10, largely due to unappreciated defects in PRC2, which confers sensitivity to combined BET/MEK inhibitors in xenograft and PDX models. Efficacy of the combination is dependent on suppression of HOXC10 by BET inhibitors. We further show that HOXC10 regulates the expression of pre-replication complex (pre-RC) proteins in sensitive tumors. Accordingly, BET/MEK inhibitors suppress pre-RC proteins in cycling cells, triggering stalled replication, DNA damage, and death. These studies reveal a promising therapeutic strategy for KRAS-mutant NSCLCs, identify a predictive biomarker of response, and define a subset of NSCLCs with a targetable epigenetic vulnerability.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , Epigenesis, Genetic , Homeodomain Proteins/metabolism , Lung Neoplasms/pathology , Mutation , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins p21(ras)/genetics , Acrylonitrile/analogs & derivatives , Acrylonitrile/pharmacology , Aniline Compounds/pharmacology , Animals , Apoptosis , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Cell Proliferation , Female , Gene Expression Regulation, Neoplastic , Homeodomain Proteins/genetics , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , MAP Kinase Kinase 1/antagonists & inhibitors , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Proteins/antagonists & inhibitors , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
8.
Clin Cancer Res ; 26(10): 2393-2403, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32034078

ABSTRACT

PURPOSE: Evaluating drug responses using primary patient-derived cells ex vivo represents a potentially rapid and efficient approach to screening for new treatment approaches. Here, we sought to identify neratinib combinations in HER2 mutant non-small cell lung cancer (NSCLC) patient xenograft-derived organotypic spheroids (XDOTS) using a short-term ex vivo system. EXPERIMENTAL DESIGN: We generated two HER2-mutant NSCLC PDX models [DFCI359 (HER2 exon19 755_757LREdelinsRP) and DFCI315 (HER2 exon20 V777_G778insGSP)] and used the PDX tumors to generate XDOTS. Tumor spheroids were grown in a microfluidic device and treated ex vivo with neratinib-based drug combinations. Live/dead quantification was performed by dual-labeling deconvolution fluorescence microscopy. The most efficacious ex vivo combination was subsequently validated in vivo using the DFCI359 and DFCI315 PDXs and a HER2 YVMA genetically engineered mouse model. RESULTS: Both neratinib and afatinib, but not gefitinib, induced cell death in DFCI359 XDOTS. The combinations of neratinib/trastuzumab and neratinib/temsirolimus enhanced the therapeutic benefit of neratinib alone in DFCI315 and DFCI359. The combination of neratinib and trastuzumab in vivo was more effective compared with single-agent neratinib or trastuzumab and was associated with more robust inhibition of HER2 and downstream signaling. CONCLUSIONS: The XDOTS platform can be used to evaluate therapies and therapeutic combinations ex vivo using PDX tumors. This approach may accelerate the identification and clinical development of therapies for targets with no or few existing models and/or therapies.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Mutation , Receptor, ErbB-2/genetics , Animals , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Proliferation/drug effects , Female , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Mice, Inbred NOD , Mice, SCID , Quinolines/administration & dosage , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/metabolism , Spheroids, Cellular , Trastuzumab/administration & dosage , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
9.
Clin Cancer Res ; 24(23): 5963-5976, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30072474

ABSTRACT

PURPOSE: MET inhibitors can be effective therapies in patients with MET exon 14 (METex14) mutant non-small cell lung cancer (NSCLC). However, long-term efficacy is limited by the development of drug resistance. In this study, we characterize acquired amplification of wild-type (WT) KRAS as a molecular mechanism behind crizotinib resistance in three cases of METex14-mutant NSCLC and propose a combination therapy to target it. EXPERIMENTAL DESIGN: The patient-derived cell line and xenograft (PDX) DFCI358 were established from a crizotinib-resistant METex14-mutant patient tumor with massive focal amplification of WT KRAS. To characterize the mechanism of KRAS-mediated resistance, molecular signaling was analyzed in the parental cell line and its KRAS siRNA-transfected derivative. Sensitivity of the cell line to ligand stimulation was assessed and KRAS-dependent expression of EGFR ligands was quantified. Drug combinations were screened for efficacy in vivo and in vitro using viability and apoptotic assays. RESULTS: KRAS amplification is a recurrent genetic event in crizotinib-resistant METex14-mutant NSCLC. The key characteristics of this genetic signature include uncoupling MET from downstream effectors, relative insensitivity to dual MET/MEK inhibition due to compensatory induction of PI3K signaling, KRAS-induced expression of EGFR ligands and hypersensitivity to ligand-dependent and independent activation, and reliance on PI3K signaling upon MET inhibition. CONCLUSIONS: Using patient-derived cell line and xenografts, we characterize the mechanism of crizotinib resistance mediated by KRAS amplification in METex14-mutant NSCLC and demonstrate the superior efficacy of the dual MET/PI3K inhibition as a therapeutic strategy addressing this resistance mechanism.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Drug Resistance, Neoplasm/genetics , Exons , Gene Amplification , Lung Neoplasms/genetics , Mutation , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Animals , Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Line, Tumor , Crizotinib/pharmacology , DNA Copy Number Variations , Disease Models, Animal , Gene Expression Regulation, Neoplastic , Humans , In Situ Hybridization, Fluorescence , Lung Neoplasms/diagnosis , Lung Neoplasms/drug therapy , Mice , Models, Biological , Phosphatidylinositol 3-Kinases/genetics , Positron Emission Tomography Computed Tomography , Protein Kinase Inhibitors/pharmacology , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
10.
J Immunother Cancer ; 4: 84, 2016.
Article in English | MEDLINE | ID: mdl-28018599

ABSTRACT

BACKGROUND: Tumor response characteristics using immune-related RECIST1.1 (irRECIST1.1) in advanced non-small-cell lung cancer (NSCLC) patients treated with nivolumab monotherapy in the clinical setting have not been previously described with a direct comparison with the assessments according to the conventional RECIST1.1. METHODS: Fifty-six advanced NSCLC patients treated with nivolumab monotherapy after its Food and Drug Administration (FDA) approval were retrospectively studied. Tumor burden was quantified on serial CT scans during therapy using irRECIST1.1, which uses unidimensional measurements and includes new lesion measurements in total tumor burden. Response assessments by irRECIST1.1 were compared with assessments by RECIST1.1. Responses of individual lesions in different organs were also compared. RESULTS: Tumor burden change at best overall response ranged from -66.8 to +278.1% (median: +3.9%). Response rate was 14% (8/56; 8 partial responses, 0 complete responses) by irRECIST1.1 and by RECIST1.1. Time-to-progression (TTP) by irRECIST1.1 was longer than TTP by RECIST1.1 (median TTP: not reached vs. 1.9 months, respectively). No patients experienced pseudoprogression during the study. Among 128 target lesions, the lesion-based size change at best response differed significantly across different organs, with adrenal lesions and lymph nodes having greater size decrease, followed by lung, while liver and other miscellaneous lesions had lesser degree of size decrease (p = 0.002). CONCLUSIONS: Immune-related response evaluations using irRECIST1.1 in advanced NSCLC patients treated with nivolumab resulted in the identical response rate and longer TTP compared to RECIST1.1. No pseudoprogression cases were observed during the study. Adrenal lesions and lymph nodes were more responsive and liver lesions were less responsive to nivolumab.

11.
Cancer Immunol Res ; 4(4): 289-93, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26865455

ABSTRACT

The recent approval of two PD-1 inhibitors for the treatment of non-small cell lung cancer (NSCLC) has rapidly led to the widespread use of these agents in oncology practices. Pneumonitis has been recognized as a potentially life-threatening adverse event among NSCLC patients treated with PD-1 inhibitors; however, the detailed clinical and radiographic manifestations of this entity remain to be described. We report on two cases of anti-PD-1 pneumonitis in advanced NSCLC patients treated with nivolumab after its FDA approval. Both patients presented with ground-glass and reticular opacities and consolidations in a peripheral distribution on CT, demonstrating a radiographic pattern of cryptogenic organizing pneumonia. Consolidations were extensive and rapidly developed within 8 weeks of therapy in both cases. Both patients were treated with corticosteroids with subsequent improvement of respiratory symptoms and radiographic findings. One patient experienced recurrent pneumonitis after completing corticosteroid taper, or a "pneumonitis flare," in the absence of nivolumab retreatment, with subsequent improvement upon corticosteroid readministration. With the increasing use of immune checkpoint inhibitors in a growing number of tumor types, awareness of the radiographic and clinical manifestations of PD-1 inhibitor-related pneumonitis will be critical for the prompt diagnosis and management of this potentially serious adverse event.


Subject(s)
Antineoplastic Agents/adverse effects , Carcinoma, Non-Small-Cell Lung/complications , Lung Neoplasms/complications , Pneumonia/etiology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Aged , Aged, 80 and over , Anti-Bacterial Agents/therapeutic use , Antibodies, Monoclonal/adverse effects , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/drug therapy , Female , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/drug therapy , Male , Neoplasm Staging , Nivolumab , Pneumonia/diagnosis , Pneumonia/drug therapy , Prednisolone/therapeutic use , Tomography, X-Ray Computed , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...