Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
bioRxiv ; 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38293240

ABSTRACT

The c-Jun N-terminal kinase 3 (JNK3) is a stress-responsive protein kinase primarily expressed in the central nervous system (CNS). JNK3 exhibits nuanced neurological activities, such as roles in behavior, circadian rhythms, and neurotransmission, but JNK3 is also implicated in cell death and neurodegeneration. Despite the critical role of JNK3 in neurophysiology and pathology, its localization in the brain is not fully understood due to a paucity of tools to distinguish JNK3 from other isoforms. While previous functional and histological studies suggest locales for JNK3 in the CNS, a comprehensive and higher resolution of JNK3 distribution and abundance remained elusive. Here, we sought to define the anatomical and cellular distribution of JNK3 in adult mouse brains. Data reveal the highest levels of JNK3 and pJNK3 were found in the cortex and the hippocampus. JNK3 possessed neuron-type selectivity as JNK3 was present in GABAergic, cholinergic, and dopaminergic neurons, but was not detectable in VGLUT-1-positive glutamatergic neurons and astrocytes in vivo . Intriguingly, higher JNK3 signals were found in motor neurons and relevant nuclei in the cortex, basal ganglia, brainstem, and spinal cord. While JNK3 was primarily observed in the cytosol of neurons in the cortex and the hippocampus, JNK3 appeared commonly within the nucleus in the brainstem. These distinctions suggest the potential for significant differences between JNK3 actions in distinct brain regions and cell types. Our results provide a significant improvement over previous reports of JNK3 spatial organization in the adult CNS and support continued investigation of JNK3's role in neurophysiology and pathophysiology.

2.
ACS Pharmacol Transl Sci ; 5(10): 932-944, 2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36268121

ABSTRACT

Bacterial DNA gyrase, a type IIA DNA topoisomerase that plays an essential role in bacterial DNA replication and transcription, is a clinically validated target for discovering and developing new antibiotics. In this article, based on a supercoiling-dependent fluorescence quenching (SDFQ) method, we developed a high-throughput screening (HTS) assay to identify inhibitors targeting bacterial DNA gyrase and screened the National Institutes of Health's Molecular Libraries Small Molecule Repository library containing 370,620 compounds in which 2891 potential gyrase inhibitors have been identified. According to these screening results, we acquired 235 compounds to analyze their inhibition activities against bacterial DNA gyrase using gel- and SDFQ-based DNA gyrase inhibition assays and discovered 155 new bacterial DNA gyrase inhibitors with a wide structural diversity. Several of them have potent antibacterial activities. These newly discovered gyrase inhibitors include several DNA gyrase poisons that stabilize the gyrase-DNA cleavage complexes and provide new chemical scaffolds for the design and synthesis of bacterial DNA gyrase inhibitors that may be used to combat multidrug-resistant bacterial pathogens. Additionally, this HTS assay can be applied to screen inhibitors against other DNA topoisomerases.

3.
ACS Med Chem Lett ; 13(10): 1606-1614, 2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36262398

ABSTRACT

The c-Jun N-terminal kinase 3 (JNK3) is a stress-activated kinase primarily expressed in the brain and implicated as an early mediator of neuronal apoptosis. We sought to develop a PET tracer to visualize pathological JNK3 activation. Because regional JNK3 activation precedes apoptosis, such an imaging agent might enable the detection of "at risk" brain regions prior to neuronal death. We prepared a set of 19F-containing compounds on the basis of the reported aminopyrazoles. The candidate, F3, was tritiated and used in autoradiography experiments to demonstrate regional and temporal changes in JNK3 activation in a mouse model of Parkinson's disease. A significant increase in pJNK3 B max versus control animals in multiple brain regions was observed at 8 months, including the ventral midbrain. Pathological activation of JNK3 in these regions preceded statistically significant neuron loss. Analyses of brain concentrations of [18F]-F3 in naïve rats following intravenous injection revealed a small but detectable signal over the background, but was likely not sufficient to support PET imaging.

5.
Curr Protoc Neurosci ; 94(1): e110, 2020 12.
Article in English | MEDLINE | ID: mdl-33285041

ABSTRACT

Astrocytes are actively involved in a neuroprotective role in the brain, which includes scavenging reactive oxygen species to minimize tissue damage. They also modulate neuroinflammation and reactive gliosis prevalent in several brain disorders like epilepsy, Alzheimer's, and Parkinson's disease. In animal models, targeted manipulation of astrocytic function via modulation of their calcium (Ca2+ ) oscillations by incorporating light-sensitive cation channels like Channelrhodopsin-2 (ChR2) offers a promising avenue in influencing the long-term progression of these disorders. However, using adult animals for Ca2+ imaging poses major challenges, including accelerated deterioration of in situ slice health and age- related changes. Additionally, optogenetic preparations necessitate usage of a red-shifted Ca2+ indicator like Rhod-2 AM to avoid overlapping light issues between ChR2 and the Ca2+ indicator during simultaneous optogenetic stimulation and imaging. In this article, we provide an experimental setting that uses live adult murine brain slices (2-5 months) from a knock-in model expressing Channelrhodopsin-2 (ChR2(C128S)) in cortical astrocytes, loaded with Rhod-2 AM to elicit robust Ca2+ response to light stimulation. We have developed and standardized a protocol for brain extraction, sectioning, Rhod-2 AM loading, maintenance of slice health, and Ca2+ imaging during light stimulation. This has been successfully applied to optogenetically control adult cortical astrocytes, which exhibit synchronous patterns of Ca2+ activity upon light stimulation, drastically different from resting spontaneous activity. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Experimental preparation, setup, slice preparation and Rhod-2 AM staining Basic Protocol 2: Image acquisition and analysis.


Subject(s)
Astrocytes/physiology , Calcium Signaling/physiology , Cerebral Cortex/cytology , Cerebral Cortex/physiology , Optogenetics/methods , Time-Lapse Imaging/methods , Age Factors , Animals , Astrocytes/chemistry , Cerebral Cortex/chemistry , Mice , Organ Culture Techniques/methods
6.
Mol Neurobiol ; 57(11): 4467-4487, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32743737

ABSTRACT

In the brain neuropil, translocator protein 18 kDa (TSPO) is a stress response protein that is upregulated in microglia and astrocytes in diverse central nervous system pathologies. TSPO is widely used as a biomarker of neuroinflammation in preclinical and clinical neuroimaging studies. However, there is a paucity of knowledge on the function(s) of TSPO in glial cells. In this study, we explored a putative interaction between TSPO and NADPH oxidase 2 (NOX2) in microglia. We found that TSPO associates with gp91phox and p22phox, the principal subunits of NOX2 in primary murine microglia. The association of TSPO with gp91phox and p22phox was observed using co-immunoprecipitation, confocal immunofluorescence imaging, and proximity ligation assay. We found that besides gp91phox and p22phox, voltage-dependent anion channel (VDAC) also co-immunoprecipitated with TSPO consistent with previous reports. When we compared lipopolysaccharide (LPS) stimulated microglia to vehicle control, we found that a lower amount of gp91phox and p22phox protein co-immunoprecipitated with TSPO suggesting a disruption of the TSPO-NOX2 subunits association. TSPO immuno-gold electron microscopy confirmed that TSPO is present in the outer mitochondrial membrane but it is also found in the endoplasmic reticulum (ER), mitochondria-associated ER membrane (MAM), and in the plasma membrane. TSPO localization at the MAM may represent a subcellular site where TSPO interacts with gp91phox and p22phox since the MAM is a point of communication between outer mitochondria membrane proteins (TSPO) and ER proteins (gp91phox and p22phox) where they mature and form the cytochrome b558 (Cytb558) heterodimer. We also found that an acute burst of reactive oxygen species (ROS) increased TSPO levels on the surface of microglia and this effect was abrogated by a ROS scavenger. These results suggest that ROS production may alter the subcellular distribution of TSPO. Collectively, our findings suggest that in microglia, TSPO is associated with the major NOX2 subunits gp91phox and p22phox. We hypothesize that this interaction may regulate Cytb558 formation and modulate NOX2 levels, ROS production, and redox homeostasis in microglia.


Subject(s)
Microglia/metabolism , NADPH Oxidases/metabolism , Receptors, GABA/metabolism , Animals , Cytosol/metabolism , Endoplasmic Reticulum/metabolism , Female , HEK293 Cells , Heme/metabolism , Humans , Intracellular Membranes/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Microglia/ultrastructure , Mitochondria/metabolism , Models, Biological , Porphyrins/metabolism , Protein Binding , Reactive Oxygen Species/metabolism , Receptors, GABA/chemistry , Voltage-Dependent Anion Channels/metabolism
7.
ACS Omega ; 4(19): 18413-18422, 2019 Nov 05.
Article in English | MEDLINE | ID: mdl-31720544

ABSTRACT

DNA topoisomerases are essential enzymes for all living organisms and important targets for anticancer drugs and antibiotics. Although DNA topoisomerases have been studied extensively, steady-state kinetics has not been systematically investigated because of the lack of an appropriate assay. Previously, we demonstrated that newly synthesized, fluorescently labeled plasmids pAB1_FL905 and pAB1_FL924 can be used to study DNA topoisomerase-catalyzed reactions by fluorescence resonance energy transfer (FRET) or supercoiling-dependent fluorescence quenching (SDFQ). With the FRET or SDFQ method, we performed steady-state kinetic studies for six different DNA topoisomerases including two type IA enzymes (Escherichia coli and Mycobacterium smegmatis DNA topoisomerase I), two type IB enzymes (human and variola DNA topoisomerase I), and two type IIA enzymes (E. coli DNA gyrase and human DNA topoisomerase IIα). Our results show that all DNA topoisomerases follow the classical Michaelis-Menten kinetics and have unique steady-state kinetic parameters, K M, V max, and k cat. We found that k cat for all topoisomerases are rather low and that such low values may stem from the tight binding of topoisomerases to DNA. Additionally, we confirmed that novobiocin is a competitive inhibitor for adenosine 5'-triphosphate binding to E. coli DNA gyrase, demonstrating the utility of our assay for studying topoisomerase inhibitors.

8.
Cancers (Basel) ; 11(10)2019 Sep 23.
Article in English | MEDLINE | ID: mdl-31547492

ABSTRACT

Glioblastoma (GBM) patients have an estimated survival of ~15 months with treatment, and the standard of care only modestly enhances patient survival. Identifying biomarkers representing vulnerabilities may allow for the selection of efficacious chemotherapy options to address personalized variations in GBM tumors. Irinotecan targets topoisomerase I (TOP1) by forming a ternary DNA-TOP1 cleavage complex (TOP1cc), inducing apoptosis. Tyrosyl-DNA phosphodiesterase 1 (TDP1) is a crucial repair enzyme that may reduce the effectiveness of irinotecan. We treated GBM cell lines with increasing concentrations of irinotecan and compared the IC50 values. We found that the TDP1/TOP1 activity ratio had the strongest correlation (Pearson correlation coefficient R = 0.972, based on the average from three sets of experiments) with IC50 values following irinotecan treatment. Increasing the TDP1/TOP1 activity ratio by the ectopic expression of wild-type TDP1 increased in irinotecan IC50, while the expression of the TDP1 catalytic-null mutant did not alter the susceptibility to irinotecan. The TDP1/TOP1 activity ratio may be a new predictive indicator for GBM vulnerability to irinotecan, allowing for the selection of individual patients for irinotecan treatment based on risk-benefit. Moreover, TDP1 inhibitors may be a novel combination treatment with irinotecan to improve GBM patient responsiveness to genotoxic chemotherapies.

9.
CNS Neurosci Ther ; 25(7): 837-858, 2019 07.
Article in English | MEDLINE | ID: mdl-31025544

ABSTRACT

Mitochondria are highly integrated organelles that are crucial to cell adaptation and mitigating adverse physiology. Recent studies demonstrate that fundamental signal transduction pathways incorporate mitochondrial substrates into their biological programs. Reversible phosphorylation is emerging as a useful mechanism to modulate mitochondrial function in accordance with cellular changes. Critical serine/threonine protein kinases, such as the c-Jun N-terminal kinase (JNK), protein kinase A (PKA), PTEN-induced kinase-1 (PINK1), and AMP-dependent protein kinase (AMPK), readily translocate to the outer mitochondrial membrane (OMM), the interface of mitochondria-cell communication. OMM protein kinases phosphorylate diverse mitochondrial substrates that have discrete effects on organelle dynamics, protein import, respiratory complex activity, antioxidant capacity, and apoptosis. OMM phosphorylation events can be tempered through the actions of local protein phosphatases, such as mitogen-activated protein kinase phosphatase-1 (MKP-1) and protein phosphatase 2A (PP2A), to regulate the extent and duration of signaling. The central mediators of OMM signal transduction are the scaffold proteins because the relative abundance of these accessory proteins determines the magnitude and duration of a signaling event on the mitochondrial surface, which dictates the biological outcome of a local signal transduction pathway. The concentrations of scaffold proteins, such as A-kinase anchoring proteins (AKAPs) and Sab (or SH3 binding protein 5-SH3BP5), have been shown to influence neuronal survival and vulnerability, respectively, in models of Parkinson's disease (PD), highlighting the importance of OMM signaling to health and disease. Despite recent progress, much remains to be discovered concerning the mechanisms of OMM signaling. Nonetheless, enhancing beneficial OMM signaling events and inhibiting detrimental protein-protein interactions on the mitochondrial surface may represent highly selective approaches to restore mitochondrial health and homeostasis and mitigate organelle dysfunction in conditions such as PD.


Subject(s)
Mitochondria/metabolism , Phosphoric Monoester Hydrolases/metabolism , Phosphotransferases/metabolism , Animals , Humans , Phosphorylation/physiology , Signal Transduction
10.
Biochem J ; 475(21): 3471-3492, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30322886

ABSTRACT

The occurrence of chemotherapy-resistant tumors makes ovarian cancer (OC) the most lethal gynecological malignancy. While many factors may contribute to chemoresistance, the mechanisms responsible for regulating tumor vulnerability are under investigation. Our analysis of gene expression data revealed that Sab, a mitochondrial outer membrane (MOM) scaffold protein, was down-regulated in OC patients. Sab-mediated signaling induces cell death, suggesting that this apoptotic pathway is diminished in OC. We examined Sab expression in a panel of OC cell lines and found that the magnitude of Sab expression correlated to chemo-responsiveness; wherein, OC cells with low Sab levels were chemoresistant. The Sab levels were reflected by a corresponding amount of stress-induced c-Jun N-terminal kinase (JNK) on the MOM. BH3 profiling and examination of Bcl-2 and BH3-only protein concentrations revealed that cells with high Sab concentrations were primed for apoptosis, as determined by the decrease in pro-survival Bcl-2 proteins and an increase in pro-apoptotic BH3-only proteins on mitochondria. Furthermore, overexpression of Sab in chemoresistant cells enhanced apoptotic priming and restored cellular vulnerability to a combination treatment of cisplatin and paclitaxel. Contrariwise, inhibiting Sab-mediated signaling or silencing Sab expression in a chemosensitive cell line resulted in decreased apoptotic priming and increased resistance. The effects of silencing on Sab on the resistance to chemotherapeutic agents were emulated by the silencing or inhibition of JNK, which could be attributed to changes in Bcl-2 protein concentrations induced by sub-chronic JNK inhibition. We propose that Sab may be a prognostic biomarker to discern personalized treatments for OC patients.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Ovarian Neoplasms/genetics , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Female , Humans , JNK Mitogen-Activated Protein Kinases/genetics , JNK Mitogen-Activated Protein Kinases/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Signal Transduction/drug effects , Signal Transduction/genetics
11.
Brain Res ; 1670: 76-85, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28606781

ABSTRACT

Sab (SH3 binding protein 5 or SH3BP5) is a mitochondrial scaffold protein involved in signaling associated with mitochondrial dysfunction and apoptosis; furthermore, Sab is a crucial signaling platform for neurodegenerative disease. To determine how this signaling nexus could have a significant effect on disease, we examined the regional abundance of Sab in the brain and sub-neuronal distribution, and we monitored the effect of Sab-mediated signaling on neuronal activity. We found that Sab is widely expressed in the adult mouse brain with increased abundance in hippocampus, ventral midbrain, and cerebellum. Sab was found in purified synaptosomes and in cultures of hippocampal neurons and astrocytes. Confocal and electron microscopy of mouse hippocampal sections confirmed the mitochondrial localization of Sab in the soma, dendrites, and axons. Given the localization and sub-neuronal distribution of Sab, we postulated that Sab-mediated signaling could affect neuronal function, so we measured the impact of inhibiting Sab-mediated events on the spontaneous activity in cultured hippocampal neurons. Treatment with a Sab-inhibitory peptide (Tat-SabKIM1), but not a scrambled control peptide, decreased the firing frequency and spike amplitudes. Our results demonstrate that brain-specific Sab-mediated signaling plays a role in neuronal activity through the manipulation of mitochondrial physiology by interacting kinases.


Subject(s)
Membrane Proteins/genetics , Membrane Proteins/physiology , Mitochondrial Proteins/genetics , Mitochondrial Proteins/physiology , Neurons/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Astrocytes/metabolism , Brain/metabolism , Cerebellum/metabolism , Dendrites/metabolism , Gene Expression Regulation/genetics , Hippocampus/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Membrane Proteins/metabolism , Mice , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Signal Transduction/drug effects
12.
Toxicology ; 382: 24-35, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28315715

ABSTRACT

Imatinib mesylate is an effective treatment for chronic myelogenous leukemia and gastrointestinal stromal tumors. Although imatinib mesylate is highly tolerable, it has been implicated in severe congestive heart failure in mouse models and patients. A hallmark of imatinib mesylate-induced cardiotoxicity is mitochondrial dysfunction. The mitochondrial scaffold Sab has been implicated in facilitating signaling responsible for mitochondrial dysfunction in a c-Jun N-terminal Kinase (JNK)-dependent manner. We examined the impact of Sab-mediated signaling on imatinib mesylate cardiotoxicity in H9c2 rat cardiomyocyte-like cells. Silencing Sab increased the LD50 of imatinib mesylate 4-fold in H9c2 cells. Disrupting Sab-mediated signaling prevented imatinib mesylate-induced apoptosis as well. Knockdown of Sab or inhibition with a small peptide prevented oxidative stress, which was indicated by decreased reactive oxygen species production, lipid peroxidation, and protein carbonylation. Further, inhibition of Sab-related signaling partially rescued deficits in mitochondrial respiration, ATP production, and membrane potential in imatinib mesylate-treated H9c2 cells. Conversely, over-expression of Sab in H9c2 cells increased the cardiotoxicity of imatinib mesylate in vitro decreasing the LD50 over 4-fold. Sab expression was induced in H9c2 cells following cardiovascular-like stress in an AP-1 dependent manner. These data demonstrate that imatinib mesylate influences mitochondrial signaling leading to mitochondrial dysfunction and cardiotoxicity.


Subject(s)
Antineoplastic Agents/toxicity , Cardiotoxicity/metabolism , Imatinib Mesylate/toxicity , Microfilament Proteins/metabolism , Animals , Cell Line , Endoplasmic Reticulum Stress , Microfilament Proteins/genetics , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Oxidative Stress , Rats , Reactive Oxygen Species/metabolism
13.
Sci Rep ; 6: 36006, 2016 10 31.
Article in English | MEDLINE | ID: mdl-27796331

ABSTRACT

DNA topology plays essential roles in several fundamental biological processes, such as DNA replication, recombination, and transcription. Typically agarose gel electrophoresis is employed to study DNA topology. Since gel electrophoresis is time-consuming and labor intensive, it is desirable to develop other methods, such as fluorescence-based methods, for such studies. In this paper we report the synthesis of a type of unique fluorescence-labeled DNA molecules that can be used to study DNA topology and topoisomerases by fluorescence resonance energy transfer (FRET). Specifically, we inserted an 82 nt. synthetic DNA oligomer FL905 carrying a 42 nt. AT sequence with fluorescein and dabcyl labels into a gapped DNA molecule to generate relaxed and supercoiled pAB1_FL905. Since the fluorescence intensity of pAB1_FL905 is dependent on its supercoiling status, pAB1_FL905 is a powerful tool to study DNA topology and topoisomerases by FRET. pAB1_FL905 can also be developed into rapid and efficient high-throughput screening assays to identify inhibitors that target various DNA topoisomerases.


Subject(s)
DNA Topoisomerases, Type I/metabolism , DNA, Circular/chemistry , Fluorescein/chemistry , Base Sequence , DNA Gyrase/metabolism , DNA, Circular/metabolism , DNA, Superhelical/chemistry , DNA, Superhelical/metabolism , Fluorescence Resonance Energy Transfer , Nucleic Acid Conformation , Plasmids/chemistry , Plasmids/metabolism , p-Dimethylaminoazobenzene/analogs & derivatives , p-Dimethylaminoazobenzene/chemistry
14.
J Am Soc Mass Spectrom ; 27(12): 2033-2040, 2016 12.
Article in English | MEDLINE | ID: mdl-27582118

ABSTRACT

In this work, we show the advantages of label-free, tridimensional mass spectrometry imaging using dual beam analysis (25 keV Bi3+) and depth profiling (20 keV with a distribution centered at Ar1500+) coupled to time of flight secondary ion mass spectrometry (3D-MSI-TOF-SIMS) for the study of A-172 human glioblastoma cell line treated with B-cell lymphoma 2 (Bcl-2) inhibitor ABT-737. The high spatial (~250 nm) and high mass resolution (m/Δm ~10,000) of TOF-SIMS permitted the localization and identification of the intact, unlabeled drug molecular ion (m/z 811.26 C42H44ClN6O5S2- [M - H]-) as well as characteristic fragment ions. We propose a novel approach based on the inspection of the drug secondary ion yield, which showed a good correlation with the drug concentration during cell treatment at therapeutic dosages (0-200 µM with 4 h incubation). Chemical maps using endogenous molecular markers showed that the ABT-737 is mainly localized in subsurface regions and absent in the nucleus. A semiquantitative workflow is proposed to account for the biological cell diversity based on the spatial distribution of endogenous molecular markers (e.g., nuclei and cytoplasm) and secondary ion confirmation based on the ratio of drug-specific fragments to molecular ion as a function of the therapeutic dosage. Graphical Abstract ᅟ.


Subject(s)
Antineoplastic Agents/administration & dosage , Drug Delivery Systems , Spectrometry, Mass, Secondary Ion , Humans , Ions
15.
Biochem Biophys Res Commun ; 463(4): 538-44, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26032505

ABSTRACT

Chemo-sensitization is used to improve the efficacy of chemotherapeutic agents against cancers, and understanding the precise molecular mechanisms of chemo-sensitization could lead to safer and more effective approaches to treat cancer. We have previously demonstrated that mitochondrial c-Jun N-terminal Kinase (JNK) signaling is a critical component of cell death. Mitochondrial JNK signaling is coordinated on the scaffold protein Sab. In this work, we developed a sub-chronic chemo-sensitization model by exposing HeLa cells to low-dose (2 µM) LY294002. We found that this treatment increased Sab expression on mitochondria, an effect not observed in acute exposures. To examine the role of Sab in chemo-sensitization, we ectopically expressed and silenced Sab in HeLa cells. We found that elevating Sab levels in HeLa cells increased the efficacy of chemotherapeutic agents, paclitaxel and cisplatin, while silencing Sab decreased the sensitivity of cells towards these agents. The effect of Sab-mediated signaling appeared to be dependent upon mitogen dependent protein kinases (MAPKs) as ablation of Sab's MAPK-binding motifs prevented chemo-sensitization. These results suggest that mitochondrial JNK signaling is an adaptable signaling pathway that can be enhanced or restored in cancer cells to improve therapeutic efficacy.


Subject(s)
Antineoplastic Agents/therapeutic use , Chromones/pharmacology , MAP Kinase Kinase 4/metabolism , Mitochondria/drug effects , Morpholines/pharmacology , Signal Transduction/drug effects , Uterine Cervical Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Dose-Response Relationship, Drug , Drug Synergism , Female , HeLa Cells , Humans , Mitochondria/enzymology , Mutagenesis, Site-Directed , Uterine Cervical Neoplasms/enzymology
16.
Nucleic Acids Res ; 43(8): e52, 2015 Apr 30.
Article in English | MEDLINE | ID: mdl-25653160

ABSTRACT

DNA-binding and RNA-binding proteins are usually considered 'undruggable' partly due to the lack of an efficient method to identify inhibitors from existing small molecule repositories. Here we report a rapid and sensitive high-throughput screening approach to identify compounds targeting protein-nucleic acids interactions based on protein-DNA or protein-RNA interaction enzyme-linked immunosorbent assays (PDI-ELISA or PRI-ELISA). We validated the PDI-ELISA method using the mammalian high-mobility-group protein AT-hook 2 (HMGA2) as the protein of interest and netropsin as the inhibitor of HMGA2-DNA interactions. With this method we successfully identified several inhibitors and an activator for HMGA2-DNA interactions from a collection of 29 DNA-binding compounds. Guided by this screening excise, we showed that netropsin, the specific inhibitor of HMGA2-DNA interactions, strongly inhibited the differentiation of the mouse pre-adipocyte 3T3-L1 cells into adipocytes, most likely through a mechanism by which the inhibition is through preventing the binding of HMGA2 to the target DNA sequences. This method should be broadly applicable to identify compounds or proteins modulating many DNA-binding or RNA-binding proteins.


Subject(s)
DNA-Binding Proteins/antagonists & inhibitors , Enzyme-Linked Immunosorbent Assay/methods , High-Throughput Screening Assays/methods , 3T3-L1 Cells , Adipogenesis/drug effects , Animals , DNA/metabolism , DNA-Binding Proteins/metabolism , HMGA2 Protein/antagonists & inhibitors , HMGA2 Protein/metabolism , Mice , Netropsin/pharmacology , RNA-Binding Proteins/antagonists & inhibitors , RNA-Binding Proteins/metabolism
17.
J Appl Toxicol ; 35(2): 219-27, 2015 Feb.
Article in English | MEDLINE | ID: mdl-24853289

ABSTRACT

Unforeseen toxic effects contribute to compound attrition during preclinical evaluation and clinical trials. Consequently, there is a need to correlate in vitro toxicity to in vivo and clinical outcomes quickly and effectively. We propose an expedited evaluation of physiological parameters in vitro that will improve the ability to predict in vivo toxicity of potential therapeutics. By monitoring metabolism, mitochondrial physiology and cell viability, our approach provides insight to the extent of drug toxicity in vitro. To implement our approach, we used human hepatocellular carcinoma cells (HepG2) and neuroblastoma cells (SH-SY5Y) to monitor hepato- and neurotoxicity of the experimental oxime K027. We utilized a trivalent approach to measure metabolism, mitochondrial stress and induction of apoptosis in 96-well formats. Any change in these three areas may suggest drug-induced toxicity in vivo. K027 and pralidoxime, an oxime currently in clinical use, had no effect on glycolysis or oxygen consumption in HepG2 and SH-SY5Y cells. Similarly, these oximes did not induce oxidant generation nor alter mitochondrial membrane potential. Further, K027 and pralidoxime failed to activate effector caspases, and these oximes did not alter viability. The chemotherapeutic agent, docetaxel, negatively affected metabolism, mitochondrial physiology and viability. Our studies present a streamlined high-throughput trivalent approach for predicting toxicity in vitro, and this approach reveals that K027 has no measurable hepatotoxicity or neurotoxicity in vitro, which correlates with their in vivo data. This approach could eliminate toxic drugs from consideration for in vivo preclinical evaluation faster than existing toxicity prediction panels and ultimately prevent unnecessary experimentation.


Subject(s)
Hep G2 Cells/drug effects , Oximes/toxicity , Pyridinium Compounds/toxicity , Apoptosis/drug effects , Brain/drug effects , Caspases/drug effects , Cell Survival/drug effects , Docetaxel , Glycolysis/drug effects , Humans , Liver/drug effects , Membrane Potential, Mitochondrial/drug effects , Neuroblastoma/metabolism , Pralidoxime Compounds/toxicity , Taxoids/toxicity , Toxicity Tests/methods , Tumor Cells, Cultured/drug effects
18.
ACS Chem Biol ; 8(8): 1747-54, 2013 Aug 16.
Article in English | MEDLINE | ID: mdl-23751758

ABSTRACT

Both JNK and LRRK2 are associated with Parkinson's disease (PD). Here we report a reasonably selective and potent kinase inhibitor (compound 6) that bound to both JNK and LRRK2 (a dual inhibitor). A bidentate-binding strategy that simultaneously utilized the ATP hinge binding and a unique protein surface site outside of the ATP pocket was applied to the design and identification of this kind of inhibitor. Compound 6 was a potent JNK3 and modest LRRK2 dual inhibitor with an enzyme IC50 value of 12 nM and 99 nM (LRRK2-G2019S), respectively. Compound 6 also exhibited good cell potency, inhibited LRRK2:G2019S-induced mitochondrial dysfunction in SHSY5Y cells, and was demonstrated to be reasonably selective against a panel of 116 kinases from representative kinase families. Design of such a probe molecule may help enable testing if dual JNK and LRRK2 inhibitions have added or synergistic efficacy in protecting against neurodegeneration in PD.


Subject(s)
Benzofurans/chemistry , Enzyme Inhibitors/chemistry , Indazoles/chemistry , MAP Kinase Kinase 4/antagonists & inhibitors , Molecular Probes , Protein Serine-Threonine Kinases/antagonists & inhibitors , Benzofurans/pharmacology , Binding Sites , Cell Line , Enzyme Activation/drug effects , Enzyme Inhibitors/pharmacology , Humans , Indazoles/pharmacology , Inhibitory Concentration 50 , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Models, Molecular , Molecular Probes/chemistry , Molecular Probes/pharmacology , Protein Binding/drug effects , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
19.
J Biol Chem ; 288(6): 4000-11, 2013 Feb 08.
Article in English | MEDLINE | ID: mdl-23258542

ABSTRACT

To build upon recent findings that mitochondrial JNK signaling is inhibited by selectively blocking the interaction between JNK and Sab, we utilized a cell-permeable peptide to demonstrate that ischemia/reperfusion (I/R) injury could be protected in vivo and that JNK mitochondrial signaling was the mechanism by which reactive oxygen species (ROS) generation, mitochondrial dysfunction, and cardiomyocyte cell death occur. We also demonstrated that 5 mg/kg SR-3306 (a selective JNK inhibitor) was able to protect against I/R injury, reducing infarct volume by 34% (p < 0.05) while also decreasing I/R-induced increases in the activity of creatine phosphokinase and creatine kinase-MB. TUNEL staining showed that the percent TUNEL positive nuclei in rat hearts increased 10-fold after I/R injury and that this was reduced 4-fold (p < 0.01) by SR-3306. These data suggest that blocking JNK mitochondrial translocation or JNK inhibition prevents ROS increases and mitochondrial dysfunction and may be an effective treatment for I/R-induced cardiomyocyte death.


Subject(s)
MAP Kinase Kinase 4/metabolism , MAP Kinase Signaling System , Mitochondria, Heart/enzymology , Mitochondrial Proteins/metabolism , Muscle Proteins/metabolism , Myocardial Reperfusion Injury/enzymology , Myocytes, Cardiac/enzymology , Animals , Cell Death , Cell Line , Creatine Kinase/genetics , Creatine Kinase/metabolism , Creatine Kinase, MB Form/genetics , Creatine Kinase, MB Form/metabolism , Humans , MAP Kinase Kinase 4/antagonists & inhibitors , Mitochondria, Heart/genetics , Mitochondria, Heart/pathology , Mitochondrial Proteins/genetics , Muscle Proteins/genetics , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/pathology , Protein Kinase Inhibitors/pharmacology , Protein Transport/drug effects , Protein Transport/genetics , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism
20.
J Biol Chem ; 288(2): 1079-87, 2013 Jan 11.
Article in English | MEDLINE | ID: mdl-23184940

ABSTRACT

Because oxidative stress and mitochondrial dysfunction are well known contributors to Parkinson disease (PD), we set out to investigate the role mitochondrial JNK plays in the etiology of 6-hydroxydopamine-induced (6-OHDA) oxidative stress, mitochondrial dysfunction, and neurotoxicity in SHSY5Y cells and neuroprotection and motor behavioral protection in vivo. To do this, we utilized a cell-permeable peptide of the outer mitochondrial membrane protein, Sab (SH3BP5), as an inhibitor of JNK mitochondrial translocation. In vitro studies showed that 6-OHDA induced JNK translocation to the mitochondria and that inhibition of mitochondrial JNK signaling by Tat-Sab(KIM1) protected against 6-OHDA-induced oxidative stress, mitochondrial dysfunction, and neurotoxicity. Administration of Tat-Sab(KIM1) via an intracerebral injection into the mid-forebrain bundle increased the number of tyrosine hydroxylase immunoreactive neurons in the substantia nigra pars compacta by 2-fold (p < 0.05) in animals lesioned with 6-OHDA, compared with animals treated only with 6-OHDA into the nigrostriatal pathway. In addition, Tat-Sab(KIM1) decreased the d-amphetamine-induced unilateral rotations associated with the lesion by 30% (p < 0.05). Steady-state brain levels of Tat-Sab(KIM1) at day 7 were 750 nm, which was ∼3.4-fold higher than the IC(50) for this peptide versus Sab protein. Collectively, these data suggest that 6-OHDA induced JNK translocation to the mitochondria and that blocking this translocation reduced oxidative stress, mitochondrial dysfunction, and neurotoxicity both in vitro and in vivo. Moreover, the data suggest that inhibitors that block association of JNKs with the mitochondria may be useful neuroprotective agents for the treatment of Parkinson disease.


Subject(s)
JNK Mitogen-Activated Protein Kinases/metabolism , Mitochondria/drug effects , Oxidopamine/toxicity , Animals , Blotting, Western , Cell Death , Cell Line , Dopamine/metabolism , Gene Silencing , Humans , Immunohistochemistry , In Vitro Techniques , Mitochondria/metabolism , Neurons/cytology , Protein Transport , Rats , Rats, Sprague-Dawley , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...