Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Antioxidants (Basel) ; 11(12)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36552534

ABSTRACT

Intermittent hypoxia (IH) is a landmark of obstructive sleep apnea (OSA) at the core of the cardiovascular consequences of OSA. IH triggers oxidative stress, a major underlying mechanism for elevated blood pressure (BP) and increased infarct size. L-citrulline is an amino acid that has been demonstrated to be protective of the cardiovascular system and exert pleiotropic effects. Therefore, we tested the impact of citrulline supplementation on IH-induced increase in BP and infarct size. Four groups of rats exposed to normoxia (N) or IH [14 days (d), 8 h/day, 30 s-O2 21%/30 s-O2 5%] and were supplemented or not with citrulline (1 g·kg-1·d-1). After 14 d, BP was measured, and hearts were submitted to global ischemia-reperfusion to measure infarct size. Histological and biochemical analyses were conducted on hearts and aorta to assess oxidative stress. Citrulline significantly reduced BP (-9.92%) and infarct size (-18.22%) under IH only. In the aorta, citrulline supplementation significantly decreased superoxide anion and nitrotyrosine levels under IH and abolished the IH-induced decrease in nitrite. Citrulline supplementation significantly decreased myocardial superoxide anion levels and xanthine oxidase enzyme activity under IH. Citrulline shows a cardioprotective capacity by limiting IH-induced pro-oxidant activity. Our results suggest that citrulline might represent a new pharmacological strategy in OSA patients with high cardiovascular risk.

2.
Antioxidants (Basel) ; 11(8)2022 Aug 05.
Article in English | MEDLINE | ID: mdl-36009247

ABSTRACT

Atherosclerosis is associated with low-grade inflammation involving circulating monocytes. It has been shown that the levels of intermediate pro-inflammatory monocytes are associated with cardiovascular mortality and risk of ischemic stroke. It also has been shown that physical activity (PA) decreases inflammation markers, incidence of strokes, and mortality. In this cross-sectional study, we tested the effect of PA on circulating monocytes phenotype rate. A total of 29 patients with a carotid stenosis > 50% were recruited. Levels of physical activity (MET.min/week) were measured by the GPAQ questionnaire, arterial samples of blood were collected to analyze monocyte phenotype (classical, intermediate and non-classical) assessed by flow cytometry, and venous blood samples were used to dose antioxidant activity and oxidative damage. Antioxidant capacity was reduced and oxidative damage increased in patients. There was a significant decrease in the percentage of classical and intermediate monocytes in moderately active patients as compared with non-active and highly active patients. Inversely, the rate of non-classical monocytes increased in moderately active patients. Intense PA appears to blunt the beneficial effects of moderate PA. Our study also suggests that PA could be beneficial in such patients by reducing the rate of intermediate monocytes known to predict the risk of ischemic stroke and by increasing the non-classical monocytes involved in lesions' healing. Nevertheless, a longitudinal study would be necessary to confirm this hypothesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...