Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Eur J Pharm Sci ; : 106831, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38871338

ABSTRACT

Gadolinium-based contrast agents (GBCA) are complexes of a Gadolinium metal center and a linear or macrocyclic polyamino-carboxylic acid chelating agent. These agents are employed to enhance the visibility of deep abnormalities through MRI techniques. Knowing the precise dimensions of various GBCA is key parameter for understanding their in-vivo and pharmaco-kinetic behaviors, their diffusivity, as well as their relaxivity. However, conventional size characterization techniques fall short when dealing with these tiny molecules (≤1 nm). In this work, we propose to determine the size and diffusivity of gadolinium-based contrast agents using Taylor dispersion analysis (TDA). TDA provided a reliable measurement of the hydrodynamic diameter and the diffusion coefficient. The obtained results were compared to DOSY NMR (Diffusion-ordered Nuclear Magnetic Resonance Spectroscopy) and DFT (Density Functional Theory).

2.
Talanta ; 272: 125815, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38402737

ABSTRACT

Taylor dispersion analysis (TDA) is a simple and absolute method to determine the hydrodynamic radius of solutes that respond to UV or fluorescence detections. To broaden the application range of TDA, it is necessary to develop new detection modes. This study aims to study capacitively coupled contactless conductivity detector (C4D) for the analysis of charged macromolecules. The detection sensitivities and hydrodynamic radii were compared for a C4D detector and a UV detector on positively or negatively charged polymers responding both to UV and C4D (poly-L-lysine and poly(acrylamide-co-2-acrylamido-1-methyl-propanesulfonate). The influence of the composition of the background electrolyte on the detection sensitivity has been studied and optimized for C4D detection. The influence of the molar mass and of the polymer chemical charge density on the C4D and UV sensitivities of detection have been investigated based on well-characterized copolymers samples of different molar masses and charge densities. The advantages and disadvantages compared to UV detection, as well as the range of applicability of C4D detection in TDA were identified. C4D detection can be an alternative method for sizing charged polymers of reasonable molar mass (typically below 105 g mol-1) that do not absorb in UV. A decline in the sensitivity of detection in C4D was observed for higher molar masses.

3.
Int J Pharm ; 647: 123534, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-37863448

ABSTRACT

Organic solvents are commonly used in self-emulsifying drug delivery systems (SEDDS) to increase payloads of orally administered poorly soluble drugs. Since such solvents are released to a varying extent after emulsification, depending on their hydrophilic nature, they have a substantial impact on the cargo. To investigate this impact in detail, quercetin and curcumin as model drugs were incorporated in SEDDS comprising organic solvents (SEDDS-solvent) of logP < 2 and > 2. SEDDS were characterized regarding size, payload, emulsification time and solvent release. The effect of solvent release on the solubility of these drugs was determined. Preconcentrates of SEDDS-solventlogP < 2 emulsified more rapidly (< 1.5 min) forming smaller droplets than SEDDS-solventlogP > 2. Although, SEDDS-solventlogP < 2 preconcentrates provided higher quercetin solubility than the latter, a more pronounced solvent release caused a more rapid quercetin precipitation after emulsification (1.5 versus 4 h). In contrast, the more lipophilic curcumin was not affected by solvent release at all. Particularly, SEDDS-solventlogP < 2 preconcentrates provided high drug payloads without showing precipitation after emulsification. According to these results, the fate of moderate lipophilic drugs such as quercetin is governed by the release of solvent, whereas more lipophilic drugs such as curcumin remain inside the oily phase of SEDDS even when the solvent is released.


Subject(s)
Curcumin , Quercetin , Emulsions , Drug Delivery Systems/methods , Solubility , Solvents , Biological Availability
4.
J Chromatogr A ; 1705: 464189, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37442068

ABSTRACT

This study reports the development of a Taylor Dispersion Analysis (TDA) method for the size characterization of Extracellular Vesicles (EVs), which are highly heterogeneous nanoscale cell-derived vesicles (30-1000 nm). Here, we showed that TDA, conducted in uncoated fused silica capillaries (50 µm i.d.) using a conventional Capillary Electrophoresis instrument, is able to provide absolute sizing (requiring no calibration) of bovine milk-derived EVs in a small sample volume (∼ 7 nL) and over their entire size range, even the smallest ones (< 70 nm) not accessible via other techniques that provide nanoparticle sizing in suspension. TDA size measurements were repeatable (RSD < 10%) and the average EV sizes were found in the range of 120-210 nm, in very good agreement with those measured with Nanoparticle Tracking Analysis, commonly used for EV characterization. TDA allowed quantitative estimation of EVs for concentrations ≥ 2 × 1011 EVs/mL. Furthermore, TDA was able to detect minor changes in EV size (i.e. by ∼25 nm upon interaction with specific anti-CD9 antibodies of ∼150 kDa), and to highlight the impact of extraction methods (i.e. milk pretreatment: freezing, acid precipitation or centrifugation; the type of size-exclusion chromatography column) and of fluorescent labeling (i.e. intravesicular or surface labeling) on the isolated EV population size. In parallel to EV sizing, TDA allowed to detect molecular contaminants (average sizes ∼1-13 nm) present within the sample, rendering this method a valuable tool to assess the quality and quantity of EV isolates.


Subject(s)
Capillaries , Extracellular Vesicles , Centrifugation , Quality Control
5.
Electrophoresis ; 44(7-8): 701-710, 2023 04.
Article in English | MEDLINE | ID: mdl-36308033

ABSTRACT

The use of fluorescently tagged amyloid peptides, implicated in Alzheimer's disease, to study their aggregation at low concentrations is a common method; however, the fluorescent tag should not introduce a bias in the aggregation process. In this work, native amyloid peptides Aß(1-40) and Aß(1-42) and fluorescein-5-isothiocyanate (FITC), tagged ones, were studied using Taylor dispersion analysis coupled with a simultaneous UV and light-emitting diode-induced fluorescence detection, to unravel the effect of FITC on the aggregation process. For that, a total concentration of 100 µM of peptides consisting of a mixture of native and tagged ones (up to 10% in moles) was applied. Results demonstrated that FITC had a strong inhibition effect upon the aggregation behaviour of Aß(1-42), whereas for Aß(1-40), only a retardation in kinetics was observed. It was also shown that when mixed solutions of Aß(1-40) and Aß(1-42) are used, the Aß(1-42) alloform was the leading peptide in the aggregation process, and when the latter was tagged, the aggregation kinetics decreased but the lifetime of potentially toxic oligomers was drastically increased. These results confirmed that the hydrophilicity of the N-terminus part of the peptide plays a major role in the aggregation process.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Humans , Fluorescein-5-isothiocyanate , Peptide Fragments , Fluorescent Dyes
6.
ACS Chem Neurosci ; 13(6): 786-795, 2022 03 16.
Article in English | MEDLINE | ID: mdl-35201761

ABSTRACT

Aggregation of amyloid ß peptides is known to be one of the main processes responsible for Alzheimer's disease. The resulting dementia is believed to be due in part to the formation of potentially toxic oligomers. However, the study of such intermediates and the understanding of how they form are very challenging because they are heterogeneous and transient in nature. Unfortunately, few techniques can quantify, in real time, the proportion and the size of the different soluble species during the aggregation process. In a previous work (Deleanu et al. Anal. Chem. 2021, 93, 6523-6533), we showed the potential of Taylor dispersion analysis (TDA) in amyloid speciation during the aggregation process of Aß (1-40) and Aß (1-42). The current work aims at exploring in detail the aggregation of amyloid Aß (1-40):Aß (1-42) peptide mixtures with different proportions of each peptide (1:0, 3:1, 1:1, 1:3, and 0:1) using TDA and atomic force microscopy (AFM). TDA allowed for monitoring the kinetics of the amyloid assembly and quantifying the transient intermediates. Complementarily, AFM allowed the formation of insoluble fibrils to be visualized. Together, the two techniques enabled us to study the influence of the peptide ratios on the kinetics and the formation of potentially toxic oligomeric species.


Subject(s)
Alzheimer Disease , Amyloidosis , Amyloid , Amyloid beta-Peptides , Humans , Kinetics , Microscopy, Atomic Force , Peptide Fragments
7.
Int J Mol Sci ; 24(1)2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36613842

ABSTRACT

The Nipah and Hendra viruses (NiV and HeV) are biosafety level 4 human pathogens classified within the Henipavirus genus of the Paramyxoviridae family. In both NiV and HeV, the gene encoding the Phosphoprotein (P protein), an essential polymerase cofactor, also encodes the V and W proteins. These three proteins, which share an intrinsically disordered N-terminal domain (NTD) and have unique C-terminal domains (CTD), are all known to counteract the host innate immune response, with V and W acting by either counteracting or inhibiting Interferon (IFN) signaling. Recently, the ability of a short region within the shared NTD (i.e., PNT3) to form amyloid-like structures was reported. Here, we evaluated the relevance of each of three contiguous tyrosine residues located in a previously identified amyloidogenic motif (EYYY) within HeV PNT3 to the fibrillation process. Our results indicate that removal of a single tyrosine in this motif significantly decreases the ability to form fibrils independently of position, mainly affecting the elongation phase. In addition, we show that the C-terminal half of PNT3 has an inhibitory effect on fibril formation that may act as a molecular shield and could thus be a key domain in the regulation of PNT3 fibrillation. Finally, the kinetics of fibril formation for the two PNT3 variants with the highest and the lowest fibrillation propensity were studied by Taylor Dispersion Analysis (TDA). The results herein presented shed light onto the molecular mechanisms involved in fibril formation.


Subject(s)
Hendra Virus , Henipavirus Infections , Nipah Virus , Humans , Hendra Virus/genetics , Interferons/metabolism , Immunity, Innate
8.
Anal Chem ; 93(16): 6523-6533, 2021 04 27.
Article in English | MEDLINE | ID: mdl-33852281

ABSTRACT

Aggregation mechanisms of amyloid ß peptides depend on multiple intrinsic and extrinsic physicochemical factors (e.g., peptide chain length, truncation, peptide concentration, pH, ionic strength, temperature, metal concentration, etc.). Due to this high number of parameters, the formation of oligomers and their propensity to aggregate make the elucidation of this physiopathological mechanism a challenging task. From the analytical point of view, up to our knowledge, few techniques are able to quantify, in real time, the proportion and the size of the different soluble species during the aggregation process. This work aims at demonstrating the efficacy of the modern Taylor dispersion analysis (TDA) performed in capillaries (50 µm i.d.) to unravel the speciation of ß-amyloid peptides in low-volume peptide samples (∼100 µL) with an analysis time of ∼3 min per run. TDA was applied to study the aggregation process of Aß(1-40) and Aß(1-42) peptides at physiological pH and temperature, where more than 140 data points were generated with a total volume of ∼1 µL over the whole aggregation study (about 0.5 µg of peptides). TDA was able to give a complete and quantitative picture of the Aß speciation during the aggregation process, including the sizing of the oligomers and protofibrils, the consumption of the monomer, and the quantification of different early- and late-formed aggregated species.


Subject(s)
Amyloid beta-Peptides , Peptide Fragments , Amyloid beta-Peptides/analysis , Amyloid beta-Peptides/chemistry , Metals
9.
Mol Pharm ; 17(9): 3236-3245, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32658482

ABSTRACT

The aim of this study was to investigate the fate and the impact of cosolvents in self-emulsifying drug delivery systems (SEDDS). Three different SEDDS comprising the cosolvents DMSO (FD), ethanol (FE), and benzyl alcohol (FBA) as well as the corresponding formulations without these cosolvents (FD0, FE0, and FBA0) were developed. Mean droplet size, polydispersity index (PDI), ζ potential, stability, and emulsification time were determined. Cosolvent release studies were performed via the dialysis membrane method and Taylor dispersion analysis (TDA). Furthermore, the impact of cosolvent utilization on payloads in SEDDS was examined using quinine as a model drug. SEDDS with and without a cosolvent showed no significant differences in droplet size, PDI, and ζ potential. The emulsification time was 3-fold (FD0), 80-fold (FE0), and 7-fold (FBA0) longer due to the absence of the cosolvents. Release studies in demineralized water provided evidence for an immediate and complete release of DMSO, ethanol, and benzyl alcohol. TDA confirmed this result. Moreover, a 1.4-fold (FD), 2.91-fold (FE), and 2.17-fold (FBA) improved payload of the model drug quinine in the selected SEDDS preconcentrates was observed that dropped after emulsification within 1-5 h due to drug precipitation. In parallel, the quinine concentrations decreased until reaching the same levels of the corresponding SEDDS without cosolvents. Due to the addition of hydrophilic cosolvents, the emulsifying properties of SEDDS are strongly improved. As hydrophilic cosolvents are immediately released from SEDDS during the emulsification process, however, their drug solubilizing properties in the resulting oily droplets are very limited.


Subject(s)
Emulsifying Agents/chemistry , Emulsions/chemistry , Solubility/drug effects , Solvents/chemistry , Chemistry, Pharmaceutical/methods , Drug Carriers/chemistry , Drug Delivery Systems/methods , Hydrophobic and Hydrophilic Interactions , Particle Size , Quinine/chemistry
10.
Int J Pharm ; 559: 228-234, 2019 Mar 25.
Article in English | MEDLINE | ID: mdl-30703502

ABSTRACT

Therapeutic peptides are facing an increasing interest as drugs for the treatment of many diseases. The challenge in the administration of such drugs, due to inherent properties of these peptides, is to make them bioavailable. Self-emulsifying drug delivery systems (SEDDS) are considered a suitable and promising strategy to deliver the peptides and increase their bioavailability. However, to enter into the SEDDS nanodroplets, the peptides must be made hydrophobic by complexation with surfactants (formation of hydrophobic ion pair, HIP). The aim of this work is to assess the possibility to quantify the amount of released peptides and of the remaining docusate/peptide HIP in the nanodroplets by Taylor Dispersion Analysis (TDA) on two therapeutic peptides (leuprorelin and desmopressin). It also clearly demonstrates that the logP value of the peptide has a strong influence on the extent of HIP inside of the SEDDS nanodroplets. For instance leuprorelin-docusate complex (logP = 3) was 100% inside of the nanodroplets at low ionic strength, while for desmopressin-docusate complex (logP = 0.5) only 30% were able to enter the nanodroplets. It was also shown that an increase in the ionic strength of the release media allowed to increase the amount of released peptide up to 80% for leuprorelin and 100% for desmopressin, at physiological ionic strength. TDA experiments allowed to determine the partitioning coefficient, logD value, of the peptide between the SEDDS and continuous aqueous phases. In conclusion, this work demonstrates that TDA is a rapid, straightforward and useful technique for developing SEDDS formulations.


Subject(s)
Ions/chemistry , Peptides/chemistry , Biological Availability , Chemistry, Pharmaceutical/methods , Dioctyl Sulfosuccinic Acid/chemistry , Drug Delivery Systems/methods , Drug Liberation/drug effects , Emulsifying Agents/chemistry , Emulsions/chemistry , Hydrophobic and Hydrophilic Interactions , Leuprolide/chemistry , Solubility/drug effects , Surface-Active Agents/chemistry
11.
Polymers (Basel) ; 10(1)2018 Jan 04.
Article in English | MEDLINE | ID: mdl-30966081

ABSTRACT

In this present work, three generations of dendrigraft poly(l-Lysine) (DGL) were studied regarding their ability to interact with linear poly (acrylamide-co-2-acrylamido-2-methyl-1-propanesulfonate) (PAMAMPS) of different chemical charge densities (30% and 100%). Frontal analysis continuous capillary electrophoresis (FACCE) was successfully applied to determine binding constants and binding stoichiometries. The effect of DGL generation on the interaction was evaluated for the first three generations (G2, G3, and G4) at different ionic strengths, and the effect of ligand topology (linear PLL vs. dendrigraft DGL) on binding parameters was evaluated. An increase of the biding site constants accompanied with a decrease of the DGL-PAMAMPS (n:1) stoichiometry was observed for increasing DGL generation. The logarithm of the global binding constants decreased linearly with the logarithm of the ionic strength. This double logarithmic representation allowed determining the extent of counter-ions released from the association of DGL molecules onto one PAMAMPS chain that was compared to the total entropic reservoir constituted by the total number of condensed counter-ions before the association.

12.
Polymers (Basel) ; 10(12)2018 Dec 02.
Article in English | MEDLINE | ID: mdl-30961256

ABSTRACT

The characterization of statistical copolymers of various charge densities remains an important and challenging analytical issue. Indeed, the polyelectrolyte (PE) effective electrophoretic mobility tends to level off above a certain charge density, due to the occurrence of Manning counterion condensation. Surprisingly, we demonstrate in this work that it is possible to get highly resolutive separations of charged PE using free-solution capillary electrophoresis, even above the critical value predicted by the Manning counterion condensation theory. Full separation of nine statistical poly(acrylamide-co-2-acrylamido-2-methylpropanesulfonate) polymers of different charge densities varying between 3% and 100% was obtained by adjusting the ionic strength of the background electrolyte (BGE) in counter electroosmotic mode. Distributions of the chemical charge density could be obtained for the nine PE samples, showing a strong asymmetry of the distribution for the highest-charged PE. This asymmetry can be explained by the different reactivity ratios during the copolymerization. To shed more light on the separation mechanism, effective and apparent selectivities were determined by a systematic study and modeling of the electrophoretic mobility dependence according to the ionic strength. It is demonstrated that the increase in resolution with increasing BGE ionic strength is not only due to a closer matching of the electroosmotic flow magnitude with the PE electrophoretic effective mobility, but also to an increase of the dependence of the PE effective mobility according to the charge density.

13.
Int J Pharm ; 537(1-2): 94-101, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29248609

ABSTRACT

Self-emulsifying drug delivery systems based on lipids have gained in interest in recent years due to their capacity to enhance the bioavailability of poorly water soluble drugs. Their oral intake suggests that they will be in contact with gastric and pancreatic enzymes during their passage through the gastrointestinal tract. The study of the evolution of such systems in the presence of enzymes is thus essential to develop better drug delivery vehicles. In this work, the lipolysis of two lipid based self-emulsifying drug delivery systems, Labrasol® and Gelucire® 44/14 by pancreatic enzymes and under conditions mimicking the gastrointestinal tract are presented. The following of the digestion is realized by Taylor dispersion analysis using fluorescent detection. A hydrophobic marker was used to tag the microdroplets. Results have shown that, Labrasol® droplets decrease exponentially in size with lipolysis time, from 11.8 nm to 3.5 nm in 20 min. On the contrary, Gelucire® 44/14 droplets increased sigmoïdally in size from 5.6 to 24.7 nm. Even after 120 min lipolysis, both systems maintained a solubilizing capacity of the hydrophobic marker.


Subject(s)
Emulsions/chemistry , Excipients/chemistry , Lipids/chemistry , Lipolysis/drug effects , Biomarkers/metabolism , Digestion/physiology , Drug Delivery Systems/methods , Fluorescence , Gastrointestinal Tract/metabolism , Glycerides/chemistry , Particle Size , Polyethylene Glycols/chemistry , Solubility
14.
Anal Chem ; 89(24): 13487-13493, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29120620

ABSTRACT

Taylor dispersion analysis (TDA) is an absolute method (no calibration needed) for the determination of the molecular diffusion coefficient (D) based on the band broadening of a solute in a laminar flow. TDA is virtually applicable to any solute with size ranging from angstrom to sub-micrometer. The higher sizing limit is restricted by the occurrence of possibly two regimes: convective and hydrodynamic chromatography (HDC) regimes, which have different physical origins that should not be confused. This work aims at clearly defining the experimental conditions for which these two regimes can play a role, alone or concomitantly. It also calculates the relative error on D due to the HDC regime according to the solute to capillary size ratio. It is demonstrated in this work that HDC does not significantly affect the TDA measurement as long as the hydrodynamic radius of the solute is lower than 0.0051 times the capillary radius. Experimental illustrations of the occurrence of the two regimes are given taking polystyrene nanoparticles as model solutes. Finally, application of TDA to the sizing of large real-life solutes is proposed, taking cubosomes as new drug nanocarriers of potential interest for drug delivery purposes.


Subject(s)
Hydrodynamics , Nanoparticles/chemistry , Phosphatidylglycerols/chemistry , Poloxamer/chemistry , Chromatography , Diffusion , Particle Size , Surface Properties
15.
Chemistry ; 23(57): 14323-14331, 2017 Oct 12.
Article in English | MEDLINE | ID: mdl-28816368

ABSTRACT

The designed arrangement of biomolecular entities within monodisperse nanostructures is an important challenge toward functional biomaterials. We report herein a method for the formation of water-soluble peptide-based cages using orthogonal ligation reactions-acylhydrazone condensation and thiol-maleimide addition. The results show that using preorganized cyclic peptides and heterobifunctional spacers as building blocks and a set of orthogonal and chemoselective ligation reactions enable cage formation in one pot from six components and through eight reactions. Molecular modelling simulations reveal the structural dynamics of these structures. Finally, we exploited the reactional dynamics of the acylhydrazone by demonstrating the controlled dissociation of the cage through directed component exchange.

16.
Anal Chem ; 89(12): 6710-6718, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28528548

ABSTRACT

Taylor dispersion analysis (TDA) allows the determination of the molecular diffusion coefficient (D) or the hydrodynamic radius (Rh) of a solute from the peak broadening of a plug of solute in a laminar Poiseuille flow. The main limitation plaguing the broader applicability of TDA is the lack of a sensitive detection modality. UV absorption is typically used with TDA but is only suitable for UV-absorbing or derivatized compounds. In this work, we present a development of the TDA method for non-UV absorbing compounds by using a universal detector based on refractive index (RI) sensing with backscattering interferometry (BSI). BSI was interfaced to a capillary electrophoresis-UV instrument using a polyimide coated fused silica capillary and an in-house designed flow-cell assembly. Polysaccharides were selected to demonstrate the application of TDA-BSI for size characterization. Under the conditions of validity of TDA, D and Rh average values and the entire Rh distributions were obtained from the (poly)saccharide taylorgrams, including non-UV absorbing polymers.

17.
J Phys Chem B ; 121(12): 2684-2694, 2017 03 30.
Article in English | MEDLINE | ID: mdl-28263598

ABSTRACT

In this study, binding of linear poly(l-lysine) to a series of acrylamide and 2-acrylamido-2-methyl-1-propanesulfonate copolymers was examined by isothermal titration calorimetry (ITC). Binding constant and stoichiometry were systematically determined at different ionic strengths and for different polyanion charge densities varying between 15% and 100%. The range of investigated ionic strengths was carefully adjusted according to the polyanion charge densities to get measurable binding constants (i.e., formation binding constant typically comprised between 104 and 106 M-1) by isothermal titration calorimetry (ITC). The number of released counterions during the polyelectrolyte complex formation was determined from the log-log dependence of the binding constant according to the ionic strength and was compared to the total number of condensed counterions estimated from the Manning theory. Experimental results obtained by ITC are in very good agreement with those previously obtained by frontal analysis continuous capillary electrophoresis (FACCE) and can be used to model and predict the binding parameters at any ionic strength or any polyanion charge density. Thermodynamic parameters of the complexation between the oppositely charged polyelectrolytes confirm that the complex formation was entropically driven together with a favorable (but minor) enthalpic contribution. For the first time, specificities, advantages/disadvantages of ITC, and FACCE techniques for studying polyelectrolyte complexations are compared and discussed, using the same experimental conditions.

18.
Polymers (Basel) ; 9(2)2017 Feb 04.
Article in English | MEDLINE | ID: mdl-30970728

ABSTRACT

The interactions between model polyanions and polycations have been studied using frontal continuous capillary electrophoresis (FACCE) which allows the determination of binding stoichiometry and binding constant of the formed polyelectrolyte complex (PEC). In this work, the effect of the poly(l-lysine) (PLL) molar mass on the interaction with statistical copolymers of acrylamide and 2-acrylamido-2-methyl-1-propanesulfonate (PAMAMPS) has been systematically investigated for different PAMAMPS chemical charge densities (15% and 100%) and different ionic strengths. The study of the ionic strength dependence of the binding constant allowed the determination of the total number of released counter-ions during the formation of the PEC, which can be compared to the total number of counter-ions initially condensed on the individual polyelectrolyte partners before the association. Interestingly, this fraction of released counter-ions, which was strongly dependent on the PLL molar mass, was almost independent of the PAMAMPS charge density. These findings are useful to predict the binding constant according to the molar mass and charge density of the polyelectrolyte partners.

19.
Soft Matter ; 12(48): 9728-9737, 2016 Dec 06.
Article in English | MEDLINE | ID: mdl-27858039

ABSTRACT

In this work, a systematic study of the interactions between poly(l-lysine) and variously charged statistical copolymers of acrylamide and 2-acrylamido-2-methyl-1-propanesulfonate (PAMAMPS) has been carried out by frontal analysis continuous capillary electrophoresis (FACCE). FACCE was successfully implemented to obtain the interaction parameters (binding constant and stoichiometry) at different ionic strengths and for different PAMAMPS charge densities varying between 15% and 100%. The range of investigated ionic strengths was carefully adjusted according to the PAMAMPS charge density to obtain measurable binding constants by FACCE (i.e. formation binding constant typically comprised between 104 and 106 M-1). The number of released counter-ions during the polyelectrolyte complex formation was systematically quantified via the ionic strength dependence of the binding constant and was compared to the total condensed counter-ion reservoir according to Manning theory on counter-ion condensation. A descriptive and predictive model relating the physico-chemical properties of the two partners, the binding constant and the ionic strength is proposed in the framework of multiple independent interaction sites of equal energy.

20.
Int J Pharm ; 513(1-2): 262-269, 2016 Nov 20.
Article in English | MEDLINE | ID: mdl-27620340

ABSTRACT

In this work, the sizing of microemulsion droplets of a lipid-based pharmaceutical excipient (Labrasol® ALF) is performed by Taylor dispersion analysis (TDA) using fluorescent detection. An hydrophobic fluorescent marker is used to tag the microemulsion droplet and to increase the sensitivity of detection (compared to UV detection). Combined with the frontal TDA mode, fluorescent detection was mandatory for an accurate sizing of microemulsions containing large coacervates. Microemulsion sizing of Labrasol was performed at various concentrations from 1 to 70g.L-1 and at two different temperature (25°C and 37°C). Results obtained by TDA are compared to those derived from DLS measurements. The combination of both techniques allows estimating the size and proportion of coacervates in the microemulsion, as well as the polydispersity in size of the sample.


Subject(s)
Excipients/chemistry , Glycerides/chemistry , Alkynes/chemistry , Anthracenes/chemistry , Dynamic Light Scattering , Emulsions , Fluorescence , Fluorescent Dyes/chemistry , Hydrodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...