Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 157(20): 204106, 2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36456227

ABSTRACT

We present the theory and the implementation of a low-cost four-component relativistic equation of motion coupled cluster method for ionized states based on frozen natural spinors. A single threshold (natural spinor occupancy) can control the accuracy of the calculated ionization potential values. Frozen natural spinors can significantly reduce the computational cost for valence and core-ionization energies with systematically controllable accuracy. The convergence of the ionization potential values with respect to the natural spinor occupancy threshold becomes slower with the increase in basis set dimension. However, the use of a natural spinor threshold of 10-5 and 10-6 gives excellent agreement with experimental results for valence and core ionization energies, respectively.

2.
J Chem Phys ; 156(20): 204120, 2022 May 28.
Article in English | MEDLINE | ID: mdl-35649878

ABSTRACT

We present the theory, implementation, and benchmark results for a frozen natural spinors based reduced cost four-component relativistic coupled cluster method. The natural spinors are obtained by diagonalizing the one-body reduced density matrix from a relativistic second-order Møller-Plesset calculation based on a four-component Dirac-Coulomb Hamiltonian. The correlation energy in the coupled cluster method converges more rapidly with respect to the size of the virtual space in the frozen natural spinor basis than that observed in the standard canonical spinors obtained from the Dirac-Hartree-Fock calculation. The convergence of properties is not smooth in the frozen natural spinor basis. However, the inclusion of the perturbative correction smoothens the convergence of the properties with respect to the size of the virtual space in the frozen natural spinor basis and greatly reduces the truncation errors in both energy and property calculations. The accuracy of the frozen natural spinor based coupled cluster methods can be controlled by a single threshold and is a black box to use.

SELECTION OF CITATIONS
SEARCH DETAIL
...