Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Publication year range
1.
Biol Chem ; 401(10): 1167-1180, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32386183

ABSTRACT

The proliferation and migration of endothelial cells are vascular events of inflammation, a process which can also potentiate the effects of promigratory factors. With the aim of investigating possible modifications in the activity of erythropoietin (Epo) in an inflammatory environment, we found that Epo at a non-promigratory concentration was capable of stimulating EA.hy926 endothelial cell migration when TNF-α was present. VCAM-1 and ICAM-1 expression, as well as adhesion of monocytic THP-1 cells to endothelial layers were also increased. Structurally modified Epo (carbamylation or N-homocysteinylation) did not exhibit these effects. The sensitizing effect of TNF-α on Epo activity was mediated by the Epo receptor. Inhibition assays targeting the PI3K/mTOR/NF-κB pathway, shared by Epo and TNF-α, show a cross-talk between both cytokines. As observed in assays using antioxidants, cell migration elicited by TNF-α + Epo depended on TNF-α-generated reactive oxygen species (ROS). ROS-mediated inactivation of protein tyrosine phosphatase 1B (PTP1B), involved in Epo signaling termination, could explain the synergistic effect of these cytokines. Our results suggest that ROS generated by inflammation inactivate PTP1B, causing the Epo signal to last longer. This mechanism, along with the cross-talk between both cytokines, could explain the sensitizing action of TNF-α on the migratory effect of Epo.


Subject(s)
Erythropoietin/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Inflammation/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Cell Adhesion , Cell Movement , Cells, Cultured , Humans , Protein Tyrosine Phosphatase, Non-Receptor Type 1/analysis , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics
2.
FEBS J ; 285(20): 3801-3814, 2018 10.
Article in English | MEDLINE | ID: mdl-30103295

ABSTRACT

Many patients under therapy with recombinant human erythropoietin (rhuEPO) show resistance to the treatment, an effect likely associated with the accumulation of tissue factors, especially in renal and cardiovascular diseases. Hyperhomocysteinemia due to high serum levels of homocysteine has been suggested among the risk factors in those pathologies. Its main effect is the N-homocysteinylation of proteins due to the interaction between the highly reactive homocysteine thiolactone (HTL) and lysine residues. The aim of this study was to evaluate the effect of N-homocysteinylation on the erythropoietic and antiapoptotic abilities of EPO, which can be a consequence of structural changes in the modified protein. We found that both cellular functions were altered in the presence of HTL-EPO. A decreased net positive charge of HTL-EPO was detected by capillary zone electrophoresis, while analysis of polyacrylamide gel electropherograms suggested formation of aggregates. Far-UV spectra, obtained by Circular Dichroism Spectroscopy, indicated a switch of the protein's secondary structure from α-helix to ß-sheet structures. Results of Congo red and Thioflavin T assays confirm the formation of repetitive ß-sheet structures, which may account for aggregates. Accordingly, Dynamic Light Scattering analysis showed a markedly larger radius of the HTL-EPO structures, supporting the formation of soluble oligomers. These structural changes might interfere with the conformational adaptations necessary for efficient ligand-receptor interaction, thus affecting the proliferative and antiapoptotic functions of EPO. The present findings may contribute to explain the resistance exhibited by patients with cardio-renal syndrome to treatment with rhuEPO, as a consequence of structural modifications due to protein N-homocysteinylation.


Subject(s)
Apoptosis , Cell Proliferation , Erythropoietin/chemistry , Homocysteine/analogs & derivatives , Lysine/chemistry , Protein Processing, Post-Translational , Protein Structure, Secondary , Cells, Cultured , Erythropoietin/metabolism , Homocysteine/chemistry , Humans , Megakaryocytes/metabolism , Megakaryocytes/pathology , Protein Binding
3.
Acta bioquím. clín. latinoam ; 50(4): 773-782, dic. 2016. ilus
Article in Spanish | LILACS | ID: biblio-837650

ABSTRACT

La producción de glóbulos rojos es controlada continuamente para suplir la desaparición de las células envejecidas y garantizar un aporte de oxígeno adecuado a todo el organismo. La citoquina pleitrópica eritropoyetina (Epo), originalmente definida por su rol en la eritropoyesis para prevenir la muerte programada de progenitores eritroides en la médula ósea, ha demostrado un rol antiapoptótico protector sobre diversos tejidos no hematopoyéticos. A la reconocida eficacia del tratamiento con eritropoyetina recombinante humana (rhuEpo) para contrarrestar la anemia que acompaña a patologías muy diversas, se agregan algunos aspectos que impiden lograr los resultados terapéuticos esperados, ya sea por resistencia al tratamiento o por el desarrollo de efectos adversos. Con el fin de prevenir estos efectos, así como reducir las dosis de rhuEpo en tratamientos crónicos se han desarrollado nuevos agentes que presentan modificaciones estructurales de la Epo, o bien alteraciones en las propiedades/actividad de la Epo nativa. Dado que, actualmente, los resultados sobre los efectos de la Epo sobre morbilidad/ mortalidad en diversas patologías no están suficientemente claros, nuevas investigaciones serán útiles para resolver dudas sobre la efectividad de la eritropoyetina y sus derivados o agentes alternativos con el fin de proveer bases sólidas para el desarrollo de ensayos clínicos concluyentes.


Erythropoietin (Epo), the cytokine required for promoting erythropoiesis through the proliferation and differentiation of erythroid cells, has been reported to act as a pleiotropic cytokine beyond the hematopoietic system. In contrast with the potentially beneficial effects attributed to recombinant human erythropoietin (rhuEpo), research has advanced to indicate that mortality and morbidity rates are increased in some patient groups when treated with rhuEpo. Some cardiac and systemic conditions may predispose to adverse events, and other factors, such as proinflammatory agents, may lead to resistance to erythropoietin treatment. Many compounds are currently under investigation in order to avoid these unwanted effects and to reduce the rhuEpo dose during chronic therapies. They are either erythropoiesis-stimulating agents different from erythropoietin or structurally modified erythropoietins with altered properties and activities. In recent reports, contrasting data have raised several concerns regarding the effectiveness of erythropoietin treatment to prevent adverse events. Therefore, much investigation is needed to provide a solid basis for the development of conclusive clinical trials.


A produção de glóbulos vermelhos é controlada continuamente para suprir o desaparecimento das células envelhecidas e garantir uma contribuição de oxigênio adequado a todo o organismo. A citocina pleiotrópica eritropoietina (Epo), originalmente definida por seu papel na eritropoiese para prevenir a morte programada de progenitores eritroides na medula óssea, tem demonstrado um papel anti-apoptótico protetor sobre diversos tecidos não hematopoiéticos. Adicionam-se à reconhecida eficácia do tratamento com eritropoietina recombinante humana (rhuEpo), para contra-arrestar a anemia que acompanha patologias muito diversas, alguns aspectos que impedem alcançar os resultados terapêuticos esperados, quer seja por resistência ao tratamento ou pelo desenvolvimento de efeitos adversos. Com o fim de prevenir estes efeitos, bem como reduzir as doses de rhuEpo em tratamentos crônicos foram desenvolvidos novos agentes que apresentam modificações estruturais da Epo, ou então alterações nas propriedades/atividade da Epo nativa. Devido a que, atualmente, os resultados sobre os efeitos da Epo sobre morbidade/mortalidade em diversas patologias não estão suficientemente claros, novas pesquisas serão úteis para resolver dúvidas sobre a efetividade da eritropoietina e seus derivados ou agentes alternativos visando a fornecer bases sólidas para o desenvolvimento de ensaios clínicos concludentes.


Subject(s)
Humans , Erythropoiesis , Erythropoietin/adverse effects , Erythropoietin/therapeutic use , Signal Transduction , Biological Factors , Erythropoietin/chemistry , Receptors, Erythropoietin/therapeutic use
5.
Biochim Biophys Acta ; 1833(8): 1960-8, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23602701

ABSTRACT

It is now recognized that in addition to its activity upon erythroid progenitor cells, erythropoietin (Epo) is capable of stimulating survival of different non-erythroid cells. Since stimulation of erythropoiesis is unwanted for neuroprotection, Epo-like compounds with a more selective action are under investigation. Although the carbamylated derivative of erythropoietin (cEpo) has demonstrated non-hematopoietic tissue protection without erythropoietic effect, little is known about differential mechanisms between Epo and cEpo. Therefore, we investigated signaling pathways which play a key role in Epo-induced proliferation. Here we show that cEpo blocked FOXO3a phosphorylation, allowing expression of downstream target p27(kip1) in UT-7 and TF-1 cells capable of erythroid differentiation. This is consistent with the involvement of cEpo in slowing down G1-to-S-phase progression compared with the effect of Epo upon cell cycle. In contrast, similar antiapoptotic actions of cEpo and Epo were observed in neuronal SH-SY5Y cells. Inhibition and competition assays suggest that Epo may act through both, the homodimeric (EpoR/EpoR) and the heterodimeric (EpoR/ßcR) receptors in neuronal SH-SY5Y cells and probably in the TF-1 cell type as well. Results also indicate that cEpo needs both the EpoR and ßcR subunits to prevent apoptosis of neuronal cells. Based on evidence suggesting that cell proliferation pathways were involved in the differential effect of Epo and cEpo, we went forward to studying downstream signals. Here we provide the first evidence that unlike Epo, cEpo failed to induce FOXO3a inactivation and subsequent p27(kip1) downregulation, which is clearly shown in the incapacity of cEpo to induce erythroid cell growth.


Subject(s)
Erythropoietin/analogs & derivatives , Erythropoietin/pharmacology , Signal Transduction/drug effects , Apoptosis/drug effects , Apoptosis/genetics , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Growth Processes/drug effects , Cell Growth Processes/genetics , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p27/genetics , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Erythroid Cells/drug effects , Erythroid Cells/metabolism , Erythropoiesis/drug effects , Erythropoiesis/genetics , Forkhead Box Protein O3 , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , G1 Phase/drug effects , G1 Phase/genetics , Humans , Neurons/drug effects , Neurons/metabolism , Phosphorylation , Receptors, Erythropoietin/genetics , Receptors, Erythropoietin/metabolism , S Phase/drug effects , S Phase/genetics , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...