Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Front Aging Neurosci ; 13: 807764, 2021.
Article in English | MEDLINE | ID: mdl-35095478

ABSTRACT

The rate of progression from Mild Cognitive Impairment (MCI) to Alzheimer's disease (AD) is estimated at >10% per year, reaching up to 80-90% after 6 years. MCI is considered an indicator of early-stage AD. In this context, the diagnostic screening of MCI is crucial for detecting individuals at high risk of AD before they progress and manifest further severe symptoms. Typically, MCI has been determined using neuropsychological assessment tools such as the Montreal Cognitive Assessment (MoCA) or Mini-Mental Status Examination (MMSE). Unfortunately, other diagnostic methods are not available or are unable to identify MCI in its early stages. Therefore, identifying new biomarkers for MCI diagnosis and prognosis is a significant challenge. In this framework, miRNAs in serum, plasma, and other body fluids have emerged as a promising source of biomarkers for MCI and AD-related cognitive impairments. Interestingly, miRNAs can regulate several signaling pathways via multiple and diverse targets in response to pathophysiological stimuli. This systematic review aims to describe the current state of the art regarding AD-related target genes modulated by differentially expressed miRNAs in peripheral fluids samples in MCI subjects to identify potential miRNA biomarkers in the early stages of AD. We found 30 articles that described five miRNA expression profiles from peripheral fluid in MCI subjects, showing possible candidates for miRNA biomarkers that may be followed up as fluid biomarkers or therapeutic targets of early-stage AD. However, additional research is needed to validate these miRNAs and characterize the precise neuropathological mechanisms.

2.
Microorganisms ; 8(8)2020 Aug 04.
Article in English | MEDLINE | ID: mdl-32759661

ABSTRACT

Shiga toxin-producing Escherichia coli (STEC) causes outbreaks and sporadic cases of gastroenteritis. STEC O157:H7 is the most clinically relevant serotype in the world. The major virulence determinants of STEC O157:H7 are the Shiga toxins and the locus of enterocyte effacement. However, several accessory virulence factors, mainly outer membrane proteins (OMPs) that interact with the host cells may contribute to the virulence of this pathogen. Previously, the elongation factor thermo unstable (EF-Tu), l-asparaginase II and OmpT proteins were identified as antigens in OMP extracts of STEC. The known subcellular location of EF-Tu and l-asparaginase II are the cytoplasm and periplasm, respectively. Therefore, we investigate whether these two proteins may localize on the surface of STEC and, if so, what roles they have at this site. On the other hand, the OmpT protein, a well characterized protease, has been described as participating in the adhesion of extraintestinal pathogenic E. coli strains. Thus, we investigate whether OmpT has this role in STEC. Our results show that the EF-Tu and l-asparaginase II are secreted by O157:H7 and may also localize on the surface of this bacterium. EF-Tu was identified in outer membrane vesicles (OMVs), suggesting it as a possible export mechanism for this protein. Notably, we found that l-asparaginase II secreted by O157:H7 inhibits T-lymphocyte proliferation, but the role of EF-Tu at the surface of this bacterium remains to be elucidated. In the case of OmpT, we show its participation in the adhesion of O157:H7 to human epithelial cells. Thus, this study extends the knowledge of the pathogenic mechanisms of STEC.

3.
Anaerobe ; 58: 73-79, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31034928

ABSTRACT

Increased antibiotic usage is the main risk factor for gut microbiota dysbiosis. In dysbiosis, there is an increased susceptibility to intestinal pathogens, such as Clostridium difficile infection, the leading cause of hospital-acquired infection worldwide. High-spectrum antibiotics, such as vancomycin or metronidazole, also increases the risk of developing CDI symptoms after the treatment. An impaired immune response could also be responsible for the high incidence of recurrence of CDI (R-CDI), suggesting that immune system stimulation could help eradicate the infection in patients suffering multiple episodes in CDI or prevent the infective course. Here, we discuss novel immunotherapeutic approaches that aid the immune system to target C. difficile and how these can be improved.


Subject(s)
Bacterial Vaccines/immunology , Clostridioides difficile/immunology , Clostridium Infections/prevention & control , Clostridium Infections/therapy , Immunotherapy/methods , Bacterial Vaccines/administration & dosage , Bacterial Vaccines/isolation & purification , Biomedical Research/trends , Humans
4.
Front Immunol ; 9: 1026, 2018.
Article in English | MEDLINE | ID: mdl-29867993

ABSTRACT

Crohn's disease (CD) is a chronic inflammatory bowel disorder characterized by deregulated inflammation triggered by environmental factors. Notably, adherent-invasive Escherichia coli (AIEC), a bacterium with the ability to survive within macrophages is believed to be one of such factors. Glucocorticoids are the first line treatment for CD and to date, it is unknown how they affect bactericidal and inflammatory properties of macrophages against AIEC. The aim of this study was to evaluate the impact of glucocorticoid treatment on AIEC infected macrophages. First, THP-1 cell-derived macrophages were infected with a CD2-a AIEC strain, in the presence or absence of the glucocorticoid dexamethasone (Dex) and mRNA microarray analysis was performed. Differentially expressed mRNAs were confirmed by TaqMan-qPCR. In addition, an amikacin protection assay was used to evaluate the phagocytic and bactericidal activity of Dex-treated macrophages infected with E. coli strains (CD2-a, HM605, NRG857c, and HB101). Finally, cytokine secretion and the inflammatory phenotype of macrophages were evaluated by ELISA and flow cytometry, respectively. The microarray analysis showed that CD2-a, Dex, and CD2-a + Dex-treated macrophages have differential inflammatory gene profiles. Also, canonical pathway analysis revealed decreased phagocytosis signaling by Dex and anti-inflammatory polarization on CD2-a + Dex macrophages. Moreover, amikacin protection assay showed reduced phagocytosis upon Dex treatment and TaqMan-qPCR confirmed Dex inhibition of three phagocytosis-associated genes. All bacteria strains induced TNF-α, IL-6, IL-23, CD40, and CD80, which was inhibited by Dex. Thus, our data demonstrate that glucocorticoids impair phagocytosis and induce anti-inflammatory polarization after AIEC infection, possibly contributing to the survival of AIEC in infected CD patients.


Subject(s)
Crohn Disease/microbiology , Dexamethasone/pharmacology , Escherichia coli Infections/immunology , Glucocorticoids/pharmacology , Macrophages/drug effects , Phagocytosis/drug effects , Animals , Bacterial Adhesion , Crohn Disease/immunology , Cytokines/immunology , Escherichia coli/pathogenicity , Humans , Inflammation , Macrophages/microbiology , Mice , Mice, Knockout , Microarray Analysis , Nod2 Signaling Adaptor Protein/genetics , Real-Time Polymerase Chain Reaction , THP-1 Cells , Tumor Necrosis Factor-alpha/immunology
5.
Article in English | MEDLINE | ID: mdl-29075617

ABSTRACT

Background: Diarrheagenic Escherichia coli (DEC) strains are a major cause of diarrhea in children under 5 years of age worldwide. DEC pathogenicity relies on the interaction of bacteria with environmental factors, including the host's resident gut microbiota. Previous reports have shown changes in the gut microbiota's composition during episodes of diarrhea, which may increase the pathogenicity of DEC strains. More intense and detailed identification of microbiota strains specifically associated with DEC infections and disease is needed to pinpoint their role in DEC pathogenicity. Aim: To identify resident indicative bacterial taxa in DEC-positive diarrhea stool samples of Chilean children. Methods: We analyzed 63 diarrheal stool samples from children 1-5 years of age by FilmArray® GI in order to identify a potential pathogen and to group diarrhea episodes into those caused by DEC as sole pathogen (DEC group, 32 samples) and those caused by an enteric virus as sole pathogen (viral group, 31 samples). In addition, 30 stool samples from healthy children, negative for enteric pathogens, were evaluated (healthy group). The 16S rRNA gene was amplified and sequenced using 454 pyrosequencing. Sequences were clustered into operational taxonomic units (OTUs) at 99% identity and their representatives were used to assign them to operational phylogenetic units (OPUs) using a phylogenetic inference approach. Results: Taxa assignment using the OPU approach resulted in a lower number of units but with higher accuracy compared to the OTU approach. Data analysis indicated an increase in sequences belonging to the phylum Proteobacteria in the DEC group compared to the viral and healthy groups. Samples displayed a statistically different community structure by sample grouping by redundancy analysis and ANOVA. Escherichia albertii (p = 0.001), Citrobacter werkmanii (p = 0.001), Yersinia enterocolitica, subsp. paleartica (p = 0.048), and Haemophilus sputorum (p = 0.028) were indicative species for the DEC group as compared to the viral and healthy groups. Conclusion: Gut microbiota in Chilean children with DEC-positive diarrhea differed from microbiota associated with enteric virus and healthy children. Indicative species found in this study may prove relevant in advancing our understanding of the relationship between resident gut microbiota and DEC leading to the occurrence of disease.


Subject(s)
Diarrhea/microbiology , Escherichia coli Infections/microbiology , Escherichia coli/pathogenicity , Gastrointestinal Microbiome/genetics , Gastrointestinal Tract/microbiology , Child, Preschool , Chile/epidemiology , Cohort Studies , Diarrhea/epidemiology , Escherichia coli Infections/epidemiology , Feces/microbiology , Humans , Infant , Phylogeny , RNA, Ribosomal, 16S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...