Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuron ; 109(14): 2326-2338.e8, 2021 07 21.
Article in English | MEDLINE | ID: mdl-34146469

ABSTRACT

Executing learned motor behaviors often requires the transformation of sensory cues into patterns of motor commands that generate appropriately timed actions. The cerebellum and thalamus are two key areas involved in shaping cortical output and movement, but the contribution of a cerebellar-thalamocortical pathway to voluntary movement initiation remains poorly understood. Here, we investigated how an auditory "go cue" transforms thalamocortical activity patterns and how these changes relate to movement initiation. Population responses in dentate/interpositus-recipient regions of motor thalamus reflect a time-locked increase in activity immediately prior to movement initiation that is temporally uncoupled from the go cue, indicative of a fixed-latency feedforward motor timing signal. Blocking cerebellar or motor thalamic output suppresses movement initiation, while stimulation triggers movements in a behavioral context-dependent manner. Our findings show how cerebellar output, via the thalamus, shapes cortical activity patterns necessary for learned context-dependent movement initiation.


Subject(s)
Cerebellum/physiology , Motor Cortex/physiology , Movement/physiology , Neurons/physiology , Thalamus/physiology , Animals , Behavior, Animal/physiology , Mice , Neural Pathways/physiology
2.
Sci Rep ; 6: 24764, 2016 04 28.
Article in English | MEDLINE | ID: mdl-27124107

ABSTRACT

There is growing concern over the risk to bee populations from neonicotinoid insecticides and the long-term consequences of reduced numbers of insect pollinators to essential ecosystem services and food security. Our knowledge of the risk of neonicotinoids to bees is based on studies of imidacloprid and thiamethoxam and these findings are extrapolated to clothianidin based on its higher potency at nicotinic acetylcholine receptors. This study addresses the specificity and consequences of all three neonicotinoids to determine their relative risk to bumblebees at field-relevant levels (2.5 ppb). We find compound-specific effects at all levels (individual cells, bees and whole colonies in semi-field conditions). Imidacloprid and clothianidin display distinct, overlapping, abilities to stimulate Kenyon cells, indicating the potential to differentially influence bumblebee behavior. Bee immobility was induced only by imidacloprid, and an increased vulnerability to clothianidin toxicity only occurred following chronic exposure to clothianidin or thiamethoxam. At the whole colony level, only thiamethoxam altered the sex ratio (more males present) and only clothianidin increased queen production. Finally, both imidacloprid and thiamethoxam caused deficits in colony strength, while no detrimental effects of clothianidin were observed. Given these findings, neonicotinoid risk needs to be considered independently for each compound and target species.


Subject(s)
Bees/drug effects , Insecticides/toxicity , Neonicotinoids/toxicity , Neurons/drug effects , Receptors, Nicotinic/metabolism , Animals , Bees/physiology , Behavior, Animal/drug effects , Brain/metabolism , Cells, Cultured , Chromatography, High Pressure Liquid , Guanidines/analysis , Guanidines/toxicity , Insecticides/analysis , Neonicotinoids/analysis , Neurons/cytology , Neurons/metabolism , Nitro Compounds/analysis , Nitro Compounds/toxicity , Oxazines/analysis , Oxazines/toxicity , Risk , Sex Ratio , Tandem Mass Spectrometry , Thiamethoxam , Thiazoles/analysis , Thiazoles/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...