Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pathogens ; 11(7)2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35890050

ABSTRACT

Conventionally, hyperimmune globulin drugs manufactured from pooled immunoglobulins from vaccinated or convalescent donors have been used in treating infections where no treatment is available. This is especially important where multi-epitope neutralization is required to prevent the development of immune-evading viral mutants that can emerge upon treatment with monoclonal antibodies. Using microfluidics, flow sorting, and a targeted integration cell line, a first-in-class recombinant hyperimmune globulin therapeutic against SARS-CoV-2 (GIGA-2050) was generated. Using processes similar to conventional monoclonal antibody manufacturing, GIGA-2050, comprising 12,500 antibodies, was scaled-up for clinical manufacturing and multiple development/tox lots were assessed for consistency. Antibody sequence diversity, cell growth, productivity, and product quality were assessed across different manufacturing sites and production scales. GIGA-2050 was purified and tested for good laboratory procedures (GLP) toxicology, pharmacokinetics, and in vivo efficacy against natural SARS-CoV-2 infection in mice. The GIGA-2050 master cell bank was highly stable, producing material at consistent yield and product quality up to >70 generations. Good manufacturing practices (GMP) and development batches of GIGA-2050 showed consistent product quality, impurity clearance, potency, and protection in an in vivo efficacy model. Nonhuman primate toxicology and pharmacokinetics studies suggest that GIGA-2050 is safe and has a half-life similar to other recombinant human IgG1 antibodies. These results supported a successful investigational new drug application for GIGA-2050. This study demonstrates that a new class of drugs, recombinant hyperimmune globulins, can be manufactured consistently at the clinical scale and presents a new approach to treating infectious diseases that targets multiple epitopes of a virus.

2.
Nat Biotechnol ; 39(8): 989-999, 2021 08.
Article in English | MEDLINE | ID: mdl-33859400

ABSTRACT

Plasma-derived polyclonal antibody therapeutics, such as intravenous immunoglobulin, have multiple drawbacks, including low potency, impurities, insufficient supply and batch-to-batch variation. Here we describe a microfluidics and molecular genomics strategy for capturing diverse mammalian antibody repertoires to create recombinant multivalent hyperimmune globulins. Our method generates of diverse mixtures of thousands of recombinant antibodies, enriched for specificity and activity against therapeutic targets. Each hyperimmune globulin product comprised thousands to tens of thousands of antibodies derived from convalescent or vaccinated human donors or from immunized mice. Using this approach, we generated hyperimmune globulins with potent neutralizing activity against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in under 3 months, Fc-engineered hyperimmune globulins specific for Zika virus that lacked antibody-dependent enhancement of disease, and hyperimmune globulins specific for lung pathogens present in patients with primary immune deficiency. To address the limitations of rabbit-derived anti-thymocyte globulin, we generated a recombinant human version and demonstrated its efficacy in mice against graft-versus-host disease.


Subject(s)
B-Lymphocytes/immunology , COVID-19/therapy , Globulins/biosynthesis , SARS-CoV-2/immunology , Animals , Antibodies, Viral/immunology , CHO Cells , Cricetulus , Enzyme-Linked Immunosorbent Assay , Globulins/immunology , Humans , Immunization, Passive , Mice , Recombinant Proteins/biosynthesis , Recombinant Proteins/immunology , Zika Virus/immunology , COVID-19 Serotherapy
3.
Biochem Biophys Res Commun ; 416(3-4): 356-61, 2011 Dec 16.
Article in English | MEDLINE | ID: mdl-22115779

ABSTRACT

800 MHz NMR structure of the 28-residue peptide thymosin alpha-1 in 40% TFE/60% water (v/v) has been determined. Restrained molecular dynamic simulations with an explicit solvent box containing 40% TFE/60% TIP3P water (v/v) were used, in order to get the 3D model of the NMR structure. We found that the peptide adopts a structured conformation having two stable regions: an alpha-helix region from residues 14 to 26 and two double ß-turns in the N-terminal twelve residues which form a distorted helical structure.


Subject(s)
Thymosin/analogs & derivatives , Amino Acid Sequence , Humans , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Protein Structure, Secondary , Thymalfasin , Thymosin/chemistry
4.
Pharm Res ; 20(12): 1952-60, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14725359

ABSTRACT

PURPOSE: The aim of the study was to investigate the effect of histidine on the stability and physical properties of a fully human anti-IL8 monoclonal antibody (ABX-IL8) in aqueous and solid forms. METHODS: Using a fractional factorial design, we tested many excipients, including histidine, sucrose, and other commonly used excipients, on the stability and physical properties of the antibody in both liquid and lyophilized forms. Antibody stability and physical properties were evaluated using size-exclusion high-performance liquid chromatography (SEC-HPLC), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and a viscometer. Residual moisture content was determined by coulometric Karl Fischer titrator. Differential scanning calorimetry (DSC) was used to detect the glass transition temperatures (Tg) of the solid cakes and melting temperatures (Tm) of the antibody in liquid formulations. Fourier-transform infrared (FTIR) spectroscopy was used to examine the overall secondary structure. RESULTS: Increasing the histidine concentration in the bulk solution inhibited the increases of high-molecular-weight (HMW) species and aggregates upon lyophilization and storage. In addition, histidine bulk enhanced solution stability of the antibody under freezing and thermal stress conditions, as evidenced by the lower levels of aggregates. Furthermore, histidine reduced viscosity of the antibody solution, which is desirable for the manufacture of the dosage form. However, high concentrations of histidine in liquid formulations led to coloration of the solution and high levels of aggregates on storage at elevated temperature (40 degrees C) after the formulations were exposed to stainless steel containers during bulk freezing-thawing. CONCLUSIONS: Histidine enhanced the stability of ABX-IL8 in both aqueous and lyophilized forms. Histidine also improved the physical properties such as reducing the solution viscosity. Liquid formulations containing high concentrations of histidine should not be stored in stainless steel tanks at elevated temperatures.


Subject(s)
Antibodies, Monoclonal/chemistry , Histidine/chemistry , Algorithms , Calorimetry, Differential Scanning , Chemical Phenomena , Chemistry, Physical , Chromatography, High Pressure Liquid , Drug Stability , Electrochemistry , Electrophoresis, Polyacrylamide Gel , Excipients , Freeze Drying , Freezing , Humans , Hydrogen-Ion Concentration , Interleukin-8/chemistry , Interleukin-8/immunology , Pharmaceutical Solutions , Solutions , Spectrophotometry, Atomic , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Temperature , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...