Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 8: 15491, 2017 05 31.
Article in English | MEDLINE | ID: mdl-28561024

ABSTRACT

Making use of bipolar transport in single-wall carbon nanotube quantum transistors would permit a single device to operate as both a quantum dot and a ballistic conductor or as two quantum dots with different charging energies. Here we report ultra-clean 10 to 100 nm scale suspended nanotube transistors with a large electron-hole transport asymmetry. The devices consist of naked nanotube channels contacted with sections of tube under annealed gold. The annealed gold acts as an n-doping top gate, allowing coherent quantum transport, and can create nanometre-sharp barriers. These tunnel barriers define a single quantum dot whose charging energies to add an electron or a hole are vastly different (e-h charging energy asymmetry). We parameterize the e-h transport asymmetry by the ratio of the hole and electron charging energies ηe-h. This asymmetry is maximized for short channels and small band gap tubes. In a small band gap device, we demonstrate the fabrication of a dual functionality quantum device acting as a quantum dot for holes and a much longer quantum bus for electrons. In a 14 nm-long channel, ηe-h reaches up to 2.6 for a device with a band gap of 270 meV. The charging energies in this device exceed 100 meV.

2.
Nano Lett ; 14(1): 289-93, 2014 Jan 08.
Article in English | MEDLINE | ID: mdl-24341325

ABSTRACT

We extract experimentally the electronic thermal conductivity, Ke, in suspended graphene that we dope using a back-gate electrode. We make use of two-point dc electron transport at low bias voltages and intermediate temperatures (50-160 K), where the electron and lattice temperatures are decoupled. The thermal conductivity is proportional to the charge conductivity times the temperature, confirming that the Wiedemann-Franz relation is obeyed in suspended graphene. We extract an estimate of the Lorenz coefficient as 1.1-1.7 × 10(-8) W ΩK(-2). Ke shows a transistor effect and can be tuned with the back-gate by more than a factor of 2 as the charge carrier density ranges from ∼0.5 to 1.8 × 10(11) cm(-2).

3.
Nano Lett ; 12(9): 4564-9, 2012 Sep 12.
Article in English | MEDLINE | ID: mdl-22888989

ABSTRACT

We study 23-30 nm long suspended single-wall carbon nanotube quantum dots and observe both their stretching and bending vibrational modes. We use low-temperature DC electron transport to excite and measure the tubes' bending mode by making use of a positive feedback mechanism between their vibrations and the tunneling electrons. In these nanoelectromechanical systems (NEMS), we measure fundamental bending frequencies f(bend) ≈ 75-280 GHz and extract quality factors Q ∼ 10(6). The NEMS's frequencies can be tuned by a factor of 2 with tension induced by mechanical breakjunctions actuated by an electrostatic force or tension from bent suspended electrodes.


Subject(s)
Crystallization/methods , Micro-Electrical-Mechanical Systems/instrumentation , Microelectrodes , Nanotechnology/instrumentation , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/ultrastructure , Equipment Design , Equipment Failure Analysis , Microwaves , Particle Size
4.
Science ; 328(5984): 1370-3, 2010 Jun 11.
Article in English | MEDLINE | ID: mdl-20538943

ABSTRACT

The ability to make electrical contact to single molecules creates opportunities to examine fundamental processes governing electron flow on the smallest possible length scales. We report experiments in which we controllably stretched individual cobalt complexes having spin S = 1, while simultaneously measuring current flow through the molecule. The molecule's spin states and magnetic anisotropy were manipulated in the absence of a magnetic field by modification of the molecular symmetry. This control enabled quantitative studies of the underscreened Kondo effect, in which conduction electrons only partially compensate the molecular spin. Our findings demonstrate a mechanism of spin control in single-molecule devices and establish that they can serve as model systems for making precision tests of correlated-electron theories.

5.
Phys Rev Lett ; 100(9): 096801, 2008 Mar 07.
Article in English | MEDLINE | ID: mdl-18352740

ABSTRACT

We study the Josephson-like interlayer tunneling signature of the strongly correlated nuT=1 quantum Hall phase in bilayer two-dimensional electron systems as a function of the layer separation, temperature, and interlayer charge imbalance. Our results offer strong evidence that a finite temperature phase transition separates the interlayer coherent phase from incoherent phases which lack strong interlayer correlations. The transition temperature is dependent on both the layer spacing and charge imbalance between the layers.

6.
Phys Rev Lett ; 99(2): 026601, 2007 Jul 13.
Article in English | MEDLINE | ID: mdl-17678242

ABSTRACT

We study electron transport through C(60) molecules in the Kondo regime using a mechanically controllable break junction. By varying the electrode spacing, we are able to change both the width and the height of the Kondo resonance, indicating modification of the Kondo temperature and the relative strength of coupling to the two electrodes. The linear conductance as a function of T/T(K) agrees with the scaling function expected for the spin-1/2 Kondo problem. We are also able to tune finite-bias Kondo features which appear at the energy of the first C(60) intracage vibrational mode.

SELECTION OF CITATIONS
SEARCH DETAIL
...