Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 24(23): 7033-7039, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38805193

ABSTRACT

Graphullerene is a novel two-dimensional carbon allotrope with unique optoelectronic properties. Despite significant experimental characterization and prior density functional theory calculations, unanswered questions remain as to the nature, energy, and intensity of the electronic and optical excitations. Here, we present first-principles calculations of the quasiparticle band structure, neutral excitations, and absorption spectra of monolayer graphullerene and bulk graphullerite, employing the GW-Bethe-Salpeter equation (GW-BSE) approach. We show that strongly bound excitons dominate the absorption spectrum of monolayer graphullerene with binding energies up to 0.8 eV, while graphullerite exhibits less pronounced excitonic effects. Our calculations also reveal a strong linear polarization anisotropy, reflecting the in-plane structural anisotropy from intermolecular coupling between neighboring C60 units. We further show that the presence of Mg atoms, crucial to the synthesis process, induces structural modifications and polarizability effects, resulting in a ∼1 eV quasiparticle gap renormalization and a reduction in the exciton binding energy to ∼0.6 eV.

2.
Nano Lett ; 23(10): 4274-4281, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37159934

ABSTRACT

The intrinsic weak and highly nonlocal dielectric screening of two-dimensional materials is well-known to lead to high sensitivity of their optoelectronic properties to environment. Less studied theoretically is the role of free carriers in those properties. Here, we use ab initio GW and Bethe-Salpeter equation calculations, with a rigorous treatment of dynamical screening and local-field effects, to study the doping dependence of the quasiparticle and optical properties of a monolayer transition-metal dichalcogenide, 2H MoTe2. We predict a quasiparticle band gap renormalization of several hundreds of meV for experimentally attainable carrier densities and a similarly sizable decrease in the exciton binding energy. This results in an almost constant excitation energy for the lowest-energy exciton resonance with an increasing doping density. Using a newly developed and generally applicable plasmon-pole model and a self-consistent solution of the Bethe-Salpeter equation, we reveal the importance of accurately capturing both dynamical and local-field effects to understand detailed photoluminescence measurements.

3.
ACS Nano ; 17(8): 7685-7694, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37043483

ABSTRACT

Monolayer transition metal dichalcogenide (TMDC) semiconductors exhibit strong excitonic optical resonances, which serve as a microscopic, noninvasive probe into their fundamental properties. Like the hydrogen atom, such excitons can exhibit an entire Rydberg series of resonances. Excitons have been extensively studied in most TMDCs (MoS2, MoSe2, WS2, and WSe2), but detailed exploration of excitonic phenomena has been lacking in the important TMDC material molybdenum ditelluride (MoTe2). Here, we report an experimental investigation of excitonic luminescence properties of monolayer MoTe2 to understand the excitonic Rydberg series, up to 3s. We report a significant modification of emission energies with temperature (4 to 300 K), thereby quantifying the exciton-phonon coupling. Furthermore, we observe a strongly gate-tunable exciton-trion interplay for all the Rydberg states governed mainly by free-carrier screening, Pauli blocking, and band gap renormalization in agreement with the results of first-principles GW plus Bethe-Salpeter equation approach calculations. Our results help bring monolayer MoTe2 closer to its potential applications in near-infrared optoelectronics and photonic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...