Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biosens Bioelectron ; 232: 115291, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37060864

ABSTRACT

Rabies is a lethal zoonotic disease caused by rabies virus (RABV) that affects human health and the economy. RABV is transmitted mainly by bats in Brazil, and surveillance in remote areas is hampered by the difficulty of properly collecting samples during fieldwork and the diagnosis is performed in laboratory conditions. Here, we report a portable electrochemical biosensor based on nucleic acid interactions for RABV detection in nasopharyngeal swab samples. The working electrode of the biosensor is composed of reduced graphene oxide (rGO) thin-film immobilized with cDNA through pi-pi stacking to enhance virus detection and specificity. Sensor performance was determined using RNA, and swab samples from bats. RNA detection shows good selectivity, and quantification presents a highly linear calibration curve (R2 = 0.990) using a concentration range of 0.145-25.39 ng/µL. A LOD of 0.104 ng/µL was reached with a sensitivity of 0.321 µA (ng/µL)-1. RABV detection in nasopharyngeal swab samples showed a good difference of positive sample from negative with a response time in seconds, ultra-fast detection compared to known techniques. Three biosensor groups were identified and named after physic-chemical surface characterization as: GO-1, GO-2, and rGO; with best performance for rGO group due to its sp2 hybridized network. Thus, we have successfully fabricated a promising electrochemical biosensor for fast in-situ detection of the RABV in swab samples, which can be expanded to other enveloped viruses that have RNA.


Subject(s)
Biosensing Techniques , Chiroptera , Graphite , Rabies virus , Rabies , Animals , Humans , Rabies virus/genetics , Chiroptera/genetics , Rabies/diagnosis , Rabies/veterinary , Rabies/epidemiology , Graphite/chemistry , RNA , Nasopharynx
2.
An Acad Bras Cienc ; 92(4): e20200718, 2020.
Article in English | MEDLINE | ID: mdl-33206792

ABSTRACT

The development of self-disinfectant devices is highly needed to prevent and control infections, mainly caused by virus. In the past years, coronaviruses have been a threat to humanity, causing severe epidemics of respiratory infections such as severe acute respiratory syndrome (SARS), in 2003, and Middle East respiratory syndrome (MERS) in 2012, and presently the SARS-CoV2 is causing the COVID-19 pandemic. Previous studies have demonstrated that surface contamination play a significant role in the spreading of viruses. These studies demonstrated that the production of highly reactive species by copper alloys contributes to rapid elimination of viruses. Nanostructured materials such as semiconductors TiO2, Co3O4 CuO, NiO, and TiO2, and silver nanoparticles can decrease the virus viability on the surfaces when associated with polymers and textiles, especially in conditions of light exposure. In addition, graphene oxide is rising as a promising material for inactivation of viruses due to its capacity of destroying the viral envelope and capsid. The virucidal property of these materials can be enhanced by increasing their functionalization with photosensitizers. The present mini-review brings subsidies for the development of new advanced self-disinfectant materials that can be used in the manufacture of gloves, masks, and a variety of other devices.


Subject(s)
Coronavirus Infections , Metal Nanoparticles , Middle East Respiratory Syndrome Coronavirus , Pandemics , Pneumonia, Viral , Betacoronavirus , COVID-19 , Humans , SARS-CoV-2 , Silver
SELECTION OF CITATIONS
SEARCH DETAIL
...