Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Biochem ; 269(21): 5163-74, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12392548

ABSTRACT

Reconstitution of membrane proteins allows their study in a membrane environment that can be manipulated at will. Because membrane proteins have diverse biophysical properties, reconstitution methods have so far been developed for individual proteins on an ad hoc basis. We developed a postinsertion reconstitution method for CCR5, a G protein coupled receptor, with seven transmembrane alpha helices and small ecto- and endodomains. A His6-tagged version of CCR5 was expressed in mammalian cells, purified using the detergent N-dodecyl-beta-d-maltoside (DDM) and reconstituted into preformed liposomal membranes saturated with DDM, removing the detergent with hydrophobic polystyrene beads. We then attempted to incorporate CD4, a protein with a single transmembrane helix and a large hydrophilic ectodomain into liposomal membranes, together with CCR5. Surprisingly, reconstitution of this protein was also achieved by the method. Both proteins were found to be present together in individual liposomes. The reconstituted CCR5 was recognized by several monoclonal antibodies, recognized its natural ligand, and CD4 bound a soluble form of gp120, a subunit of the HIV fusion protein that uses CD4 as a receptor. Moreover, cells expressing the entire fusion protein of HIV bound to the liposomes, indicating that the proteins were intact and that most of them were oriented right side out. Thus, functional coreconstitution of two widely different proteins can be achieved by this method, suggesting that it might be useful for other proteins.


Subject(s)
CD4 Antigens/chemistry , Liposomes/chemistry , Protein Renaturation , Receptors, CCR5/chemistry , Receptors, HIV/chemistry , Animals , Binding, Competitive/physiology , Blotting, Western , CD4 Antigens/biosynthesis , CD4 Antigens/genetics , CHO Cells , Chemokine CCL4 , Cricetinae , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/metabolism , Macrophage Inflammatory Proteins/metabolism , Macrophage Inflammatory Proteins/pharmacokinetics , Membranes, Artificial , Protein Binding/physiology , Receptors, CCR5/biosynthesis , Receptors, CCR5/genetics , Receptors, HIV/biosynthesis , Receptors, HIV/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...