Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 1(5): 449-55, 2007 Dec.
Article in English | MEDLINE | ID: mdl-19206666

ABSTRACT

The stability of the various facets in oxygen-induced faceting of Re(1231) has been studied by low-energy electron diffraction, scanning tunneling microcopy, and synchrotron-based high-resolution X-ray photoemission spectroscopy. When Re(1231) is annealed at 800-1200 K in oxygen (10(-7) Torr), the surface becomes completely covered with nanometer-scale facets, and its morphology depends on the substrate temperature and oxygen exposure. Especially, the (1121) facet competes with the (1011) facet in determining the surface morphology, and the stability of each facet relies on oxygen coverage. Using density functional theory, the O-Re binding energies on the facets for various oxygen concentrations are calculated to explain how the oxygen coverage affects the anisotropy of surface free energy, which in turn determines the morphology of the faceted surface.

2.
J Phys Chem B ; 110(46): 23450-9, 2006 Nov 23.
Article in English | MEDLINE | ID: mdl-17107197

ABSTRACT

High-resolution soft X-ray photoelectron spectroscopy was used to investigate the oxidation of alkylated silicon(111) surfaces under ambient conditions. Silicon(111) surfaces were functionalized through a two-step route involving radical chlorination of the H-terminated surface followed by alkylation with alkylmagnesium halide reagents. After 24 h in air, surface species representing Si(+), Si(2+), Si(3+), and Si(4+) were detected on the Cl-terminated surface, with the highest oxidation state (Si(4+)) oxide signal appearing at +3.79 eV higher in energy than the bulk Si 2p(3/2) peak. The growth of silicon oxide was accompanied by a reduction in the surface-bound Cl signal. After 48 h of exposure to air, the Cl-terminated Si(111) surface exhibited 3.63 equivalent monoleyers (ML) of silicon oxides. In contrast, after exposure to air for 48 h, CH(3)-, C(2)H(5)-, or C(6)H(5)CH(2)-terminated Si surfaces displayed <0.4 ML of surface oxide, and in most cases only displayed approximately 0.20 ML of oxide. This oxide was principally composed of Si(+) and Si(3+) species with peaks centered at +0.8 and +3.2 eV above the bulk Si 2p(3/2) peak, respectively. The silicon 2p SXPS peaks that have previously been assigned to surface Si-C bonds did not change significantly, either in binding energy or in relative intensity, during such air exposure. Use of a high miscut-angle surface (7 degrees vs < or =0.5 degrees off of the (111) surface orientation) yielded no increase in the rate of oxidation nor change in binding energy of the resultant oxide that formed on the alkylated Si surfaces. Scanning Auger microscopy indicated that the alkylated surfaces formed oxide in isolated, inhomogeneous patches on the surface.

3.
J Phys Chem B ; 109(9): 3930-7, 2005 Mar 10.
Article in English | MEDLINE | ID: mdl-16851446

ABSTRACT

Hydrogen-terminated, chlorine-terminated, and alkyl-terminated crystalline Si(111) surfaces have been characterized using high-resolution, soft X-ray photoelectron spectroscopy from a synchrotron radiation source. The H-terminated Si(111) surface displayed a Si 2p(3/2) peak at a binding energy 0.15 eV higher than the bulk Si 2p(3/2) peak. The integrated area of this shifted peak corresponded to one equivalent monolayer, consistent with the assignment of this peak to surficial Si-H moieties. Chlorinated Si surfaces prepared by exposure of H-terminated Si to PCl5 in chlorobenzene exhibited a Si 2p(3/2) peak at a binding energy of 0.83 eV above the bulk Si peak. This higher-binding-energy peak was assigned to Si-Cl species and had an integrated area corresponding to 0.99 of an equivalent monolayer on the Si(111) surface. Little dichloride and no trichloride Si 2p signals were detected on these surfaces. Silicon(111) surfaces alkylated with CnH(2n+1)- (n = 1 or 2) or C6H5CH2- groups were prepared by exposing the Cl-terminated Si surface to an alkylmagnesium halide reagent. Methyl-terminated Si(111) surfaces prepared in this fashion exhibited a Si 2p(3/2) signal at a binding energy of 0.34 eV above the bulk Si 2p(3/2) peak, with an area corresponding to 0.85 of a Si(111) monolayer. Ethyl- and C6H5CH2-terminated Si(111) surfaces showed no evidence of either residual Cl or oxidized Si and exhibited a Si 2p(3/2) peak approximately 0.20 eV higher in energy than the bulk Si 2p(3/2) peak. This feature had an integrated area of approximately 1 monolayer. This positively shifted Si 2p(3/2) peak is consistent with the presence of Si-C and Si-H surface functionalities on such surfaces. The SXPS data indicate that functionalization by the two-step chlorination/alkylation process proceeds cleanly to produce oxide-free Si surfaces terminated with the chosen alkyl group.

SELECTION OF CITATIONS
SEARCH DETAIL
...