Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurorehabil Neural Repair ; 34(4): 299-308, 2020 04.
Article in English | MEDLINE | ID: mdl-32089098

ABSTRACT

Background. Autologous nerve graft is the most common clinical intervention for repairing a nerve gap. However, its regenerative capacity is decreased in part because, unlike a primary repair, the regenerating axons must traverse 2 repair sites. Means to promote nerve regeneration across a graft are needed. Postoperative electrical stimulation (PES) improves nerve growth by reducing staggered regeneration at the coaptation site whereas conditioning electrical stimulation (CES) accelerates axon extension. In this study, we directly compared these electrical stimulation paradigms in a model of nerve autograft repair. Methods. To lay the foundation for clinical translation, regeneration and reinnervation outcomes of CES and PES in a 5-mm nerve autograft model were compared. Sprague-Dawley rats were divided into: (a) CES, (b) PES, and (c) no stimulation cohorts. CES was delivered 1 week prior to nerve cut/coaptation, and PES was delivered immediately following coaptation. Length of nerve regeneration (n = 6/cohort), and behavioral testing (n = 16/cohort) were performed at 14 days and 6 to 14 weeks post-coaptation, respectively. Results. CES treated axons extended 5.9 ± 0.2 mm, significantly longer than PES (3.8 ± 0.2 mm), or no stimulation (2.5 ± 0.2 mm) (P < .01). Compared with PES animals, the CES animals had significantly improved sensory recovery (von Frey filament testing, intraepidermal nerve fiber reinnervation) (P < .001) and motor reinnervation (horizontal ladder, gait analysis, nerve conduction studies, neuromuscular junction analysis) (P < .01). Conclusion. CES resulted in faster regeneration through the nerve graft and improved sensorimotor recovery compared to all other cohorts. It is a promising treatment to improve outcomes in patients undergoing nerve autograft repair.


Subject(s)
Axons/physiology , Electric Stimulation , Nerve Regeneration/physiology , Postoperative Care , Preoperative Care , Recovery of Function/physiology , Tibial Nerve/physiology , Tibial Nerve/transplantation , Animals , Behavior, Animal/physiology , Disease Models, Animal , Electric Stimulation/methods , Lower Extremity , Male , Motor Activity/physiology , Neural Conduction/physiology , Rats , Rats, Sprague-Dawley , Single-Blind Method , Transplantation, Autologous
2.
Exp Neurol ; 315: 60-71, 2019 05.
Article in English | MEDLINE | ID: mdl-30731076

ABSTRACT

Peripheral nerve regeneration following injury is often incomplete, resulting in significant personal and socioeconomic costs. Although a conditioning crush lesion prior to surgical nerve transection and repair greatly promotes nerve regeneration and functional recovery, feasibility and ethical considerations have hindered its clinical applicability. In a recent proof of principle study, we demonstrated that conditioning electrical stimulation (CES) had effects on early nerve regeneration, similar to that seen in conditioning crush lesions (CCL). To convincingly determine its clinical utility, establishing the effects of CES on target reinnervation and functional outcomes is of utmost importance. In this study, we found that CES improved nerve regeneration and reinnervation well beyond that of CCL. Specifically, compared to CCL, CES resulted in greater intraepidermal skin and NMJ reinnervation, and greater physiological and functional recovery including mechanosensation, compound muscle action potential on nerve conduction studies, normalization of gait pattern, and motor performance on the horizontal ladder test. These findings have direct clinical relevance as CES could be delivered at the bedside before scheduled nerve surgery.


Subject(s)
Electric Stimulation Therapy , Nerve Regeneration , Action Potentials , Animals , Gait , Male , Nerve Crush , Neural Conduction , Neuromuscular Junction/pathology , Peripheral Nerve Injuries/pathology , Psychomotor Performance , Rats , Rats, Sprague-Dawley , Recovery of Function , Sensation , Skin/innervation
SELECTION OF CITATIONS
SEARCH DETAIL
...