Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 104
Filter
1.
Int J Mol Sci ; 25(6)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38542056

ABSTRACT

Environmental pollutants are closely linked to lung cancer. The different types of environmental pollutants can be classified as chemical, physical, and biological. The roles of common chemical and physical pollutants such as PM2.5, smoking, radon, asbestos, and formaldehyde in lung cancer have been extensively studied. Notably, the worldwide COVID-19 pandemic raised awareness of the strong link between biological pollution and human health. Allergens such as house dust mites and pollen, as well as bacteria and viruses, are common biological pollutants. A few biological pollutants have been reported to promote lung cancer via inducing inflammatory cytokines secretion, such as IL-1ß, IL-6, and TGF-ß, as well as suppressing immunosurveillance by upregulating regulatory T (Treg) cells while dampening the function of CD8+ T cells and dendritic cells. However, the correlation between common biological hazards, such as SARS-CoV-2, human immunodeficiency viruses, Helicobacter pylori, and house dust mites, and lung cancer is not fully elucidated, and the underlying mechanisms are still unclear. Moreover, the majority of studies that have been performed in lung cancer and biological carcinogens were not based on the perspective of biological pollutants, which has challenged the systematicity and coherence in the field of biological pollutants in lung cancer. Here, in addition to reviewing the recent progress made in investigating the roles of allergens, viruses, and bacteria in lung cancer, we summarized the potential mechanisms underlying biological pollutants in lung cancer. Our narrative review can shed light on understanding the significance of biological pollutants in lung cancer, as well as inspire and broaden research ideas on lung cancer etiology.


Subject(s)
Environmental Pollutants , Lung Neoplasms , Animals , Humans , Lung Neoplasms/epidemiology , Lung Neoplasms/etiology , CD8-Positive T-Lymphocytes , Pandemics , Allergens , Pyroglyphidae
2.
Chin J Integr Med ; 30(4): 311-321, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37594703

ABSTRACT

OBJECTIVE: To investigate the in vivo immunomodulatory and anti-tumor mechanisms of the combined treatment of novel Four-Herb formula (4HF) and doxorubicin in triple-negative breast cancer (TNBC). METHODS: Murine-derived triple-negative mammary carcinoma cell line, 4T1 cells, was cultured and inoculated into mouse mammary glands. Sixty-six mice were randomly assigned into 6 groups (n=11 in ench): naïve, control, LD 4HF (low dose 4HF), HD 4HF (high dose 4HF), LD 4HF + D (low dose and doxorubicin), and D (doxorubicin). Apart from the naïve group, each mouse received subcutaneous inoculation with 5 × 105 4T1 cells resuspended in 100 µL of normal saline in the mammary fat pads. Starting from the day of tumor cell inoculation, tumors were grown for 6 days. The LD and HD groups received daily oral gavage of 658 and 2,630 mg/kg 4HF, respectively. The LD 4HF+D group received daily oral gavage of 658 mg/kg 4HF and weekly intraperitoneal injection of doxorubicin (5 mg/kg). The D group received weekly intraperitoneal injections of doxorubicin (5 mg/kg). The treatment naïve mice received daily oral gavage of 0.2 mL double distilled water and 0.1 mL normal saline via intraperitoneal injection once a week. The control group received daily oral gavage of 0.2 mL double-distilled water. The treatment period was 30 days. At the end of treatment, mice organs were harvested to analyze immunological activities via immunophenotyping, gene and multiplex analysis, histological staining, and gut microbiota analysis. RESULTS: Mice treated with the combination of 4HF and doxorubicin resulted in significantly reduced tumor and spleen burdens (P<0.05), altered the hypoxia and overall immune lymphocyte landscape, and manipulated gut microbiota to favor the anti-tumor immunological activities. Moreover, immunosuppressive genes, cytokines, and chemokines such as C-C motif chemokine 2 and interleukin-10 of tumors were significantly downregulated (P<0.05). 4HF-doxorubicin combination treatment demonstrated synergetic activities and was most effective in activating the anti-tumor immune response (P<0.05). CONCLUSION: The above results provide evidence for evaluating the immune regulating mechanisms of 4HF in breast cancer and support its clinical significance in its potential as an adjunctive therapeutic agent or immune supplement.


Subject(s)
Neoplasms , Saline Solution , Animals , Mice , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Combined Modality Therapy , Immunity , Water , Mice, Inbred BALB C , Cell Line, Tumor , Neoplasms/drug therapy
3.
J Leukoc Biol ; 115(1): 177-189, 2024 01 05.
Article in English | MEDLINE | ID: mdl-37713617

ABSTRACT

The global pandemic of COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been developing all over the world for more than 3 years. In late 2020, several variants of concern of SARS-CoV-2 virus emerged, with increased viral fitness and transmissibility by mutations of the spike proteins of the viral particle, denting hopes of the use of early-generation vaccines for a widespread protective immunity against viral infection. The use of adjuvants may enhance the immune responses of the conventional application of the COVID-19 vaccine. We have shown that the water extract of 2 ß-glucan-enriched immunostimulating natural products, Astragalus membranaceus (Fisch.) Bge. (AM) and Coriolus versicolor (CV), could induce innate immunity-related cytokines from human monocytes (CCL5, interleukin [IL]-6, IL-10, and tumor necrosis factor α) and monocyte-derived dendritic cells (IL-1ß, IL-10, IL-12, and tumor necrosis factor α). Using BALB/c mice, orally administrated AM and CV (1,384 and 742 mg/kg/d) for 4 d after vaccination, respectively, could enhance (1) the immunoglobulin G binding activities of BNT162b2 vaccination against ancestral and Delta SARS-CoV-2 spike proteins by 5.8- and 4.3-fold, respectively; (2) the immunoglobulin G3 subclass production of BNT162b2 vaccination against ancestral and variant SARS-CoV-2 spike proteins; and (3) the in vitro antibody-neutralizing activities of BNT162b2 vaccinated mice. In conclusion, combining AM and CV was effective in acting as an oral adjuvant with the messenger RNA vaccine BNT162b2 to improve the antigen binding activities against SARS-CoV-2 ancestral and variant SARS-CoV-2 spike proteins, probably via trained immunity of macrophages and dendritic cells.


Subject(s)
Biological Products , COVID-19 , Humans , Animals , Mice , BNT162 Vaccine , COVID-19/prevention & control , Astragalus propinquus , Interleukin-10 , Spike Glycoprotein, Coronavirus , COVID-19 Vaccines , Tumor Necrosis Factor-alpha , SARS-CoV-2 , Adjuvants, Immunologic/pharmacology , Vaccination , Antibodies, Neutralizing , Antibodies, Viral
4.
Molecules ; 28(15)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37570775

ABSTRACT

Triple-negative breast cancer (TNBC) is an invasive and persistent subtype of breast cancer that is likely to be resistant to conventional treatments. The rise in immunotherapy has created new modalities to treat cancer, but due to high costs and unreliable efficacy, adjunctive and complementary treatments have sparked interest in enhancing the efficacy of currently available treatments. Natural products, which are bioactive compounds derived from natural sources, have historically been used to treat or ameliorate inflammatory diseases and symptoms. As TNBC patients have shown little to no response to immunotherapy, the potential of natural products as candidates for adjuvant immunotherapy is being explored, as well as their immunomodulatory effects on cancer. Due to the complexity of TNBC and the ever-changing tumor microenvironment, there are challenges in determining the feasibility of using natural products to enhance the efficacy or counteract the toxicity of conventional treatments. In view of technological advances in molecular docking, pharmaceutical networking, and new drug delivery systems, natural products show promise as potential candidates in adjunctive therapy. In this article, we summarize the mechanisms of action of selected natural-product-based bioactive compounds and analyze their roles and applications in combination treatments and immune regulation.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/pathology , Molecular Docking Simulation , Immunotherapy , Tumor Microenvironment
5.
Infect Chemother ; 55(2): 257-263, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37407243

ABSTRACT

BACKGROUND: The aim of this study was to determine the feasibility of using bacteriophage therapeutics in spinal epidural abscess (SEA) by reviewing the causes and outcomes of SEA at a single institution and testing a bacteriophage for activity against preserved SEA clinical isolates. MATERIALS AND METHODS: Medical records were reviewed of patients that received incision and drainage for SEA at a single medical center. Causative organisms, incidence of coinciding bacteremia and outcomes were recorded. A subset of SEA patients (N = 11), that had preserved clinical isolates, were assessed to evaluate if a bacteriophage therapeutic had ample activity to those isolates as seen with spot tests and growth inhibition assays. RESULTS: Staphylococcus aureus was the predominate bacterial cause (71%) and bacteremia was associated with 96% of S. aureus SEA. Over 50% of the patients either died within three months, had recurrence of their infection, required repeat debridement, or had long term sequalae. A single bacteriophage had positive spot tests for all the S. aureus clinical isolates and inhibited bacterial growth for more than 24 hours for 9 of the 11 (82%) clinical isolates. CONCLUSION: SEA is associated with significant mortality and morbidity making this a potential indication for adjuvant bacteriophage therapeutics. Since S. aureus is the predominate cause of SEA and most cases are associated bacteremia this creates a potential screening and treatment platform for Staphylococcal bacteriophages therapeutics, allowing for potential pilot studies to be devised.

6.
Molecules ; 28(13)2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37446658

ABSTRACT

Vaccination is the most effective method of combating COVID-19 infection, but people with a psychological fear of needles and side effects are hesitant to receive the current vaccination, and alternative delivery methods may help. Bacillus subtilis, a harmless intestinal commensal, has recently earned a strong reputation as a vaccine production host and delivery vector, with advantages such as low cost, safety for human consumption, and straightforward oral administration. In this study, we have succeeded generating "S spores" by engineering B. subtilis with spore coat proteins resembling the spike (S) protein of the ancestral SARS-CoV-2 coronavirus. With the addition of two immunostimulating natural products as adjuvants, namely Astragalus membranaceus (Fisch.) Bge (AM) and Coriolus versicolor (CV), oral administration of S spores could elicit mild immune responses against COVID-19 infection without toxicity. Mucosal IgA against the S protein was enhanced by co-feeding with AM and CV in an S spores-inoculated mouse model. Faster and stronger IgG responses against the S protein were observed when the mice were fed with S spores prior to vaccination with the commercial COVID-19 vaccine CoronaVac. In vitro studies demonstrated that AM, CV, and B. subtilis spores could dose-dependently activate both macrophages and dendritic cells by secreting innate immunity-related IL-1ß, IL-6, and TNF-α, and some other proinflammatory chemokines and cytokines. In conclusion, the combination of S spores with AM and CV may be helpful in developing a vaccine-like supplement against respiratory infection.


Subject(s)
Biological Products , COVID-19 , Vaccines , Humans , Mice , Animals , COVID-19 Vaccines , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Biological Products/metabolism , Spores, Bacterial/metabolism , COVID-19/prevention & control , COVID-19/metabolism , SARS-CoV-2 , Immunity, Innate
7.
Antibiotics (Basel) ; 12(1)2023 Jan 08.
Article in English | MEDLINE | ID: mdl-36671317

ABSTRACT

BACKGROUND: Staphylococcus aureus is an opportunistic pathogen and a major cause of nosocomial and community-acquired infections. The alarming rise in Methicillin-resistant S. aureus (MRSA) infection worldwide and the emergence of vancomycin-resistant MRSA strains have created an urgent need to identify new and alternative treatment options. Triple combinations of antimicrobials with different antimicrobial mechanisms may be a good choice to overcome antimicrobial resistance. METHODS: In this study, we combine two natural compounds: kuraridin from Sophora flavescens and epicatechin gallate (ECG) from Camellia sinensis (Green tea), which could provide the best synergy with antibiotics against a selected panel of laboratory MRSA with known resistant mechanisms and clinical community-associated (CA) and hospital-associated (HA) MRSA as well. RESULTS: The combined use of ECG and kuraridin was efficacious in inhibiting the growth of a panel of tested MRSA strains. The antibacterial activities of gentamicin, fusidic acid and vancomycin could be further enhanced by the addition of ECG and kuraridin. In time-kill study, when vancomycin (0.5 µg/mL) was combined with ECG (2 µg/mL) and kuraridin (2 µg/mL), a very strong bactericidal growth inhibition against 3 tested strains ATCC25923, MRSA ST30 and ST239 was observed from 2 to 24 h. ECG and kuraridin both possess anti-inflammatory activities in bacterial toxin-stimulated peripheral blood mononuclear cells by suppressing the production of inflammatory cytokines (IL-1ß, IL-6 and TNFα) and are non-cytotoxic. In a murine pneumonia model infected with ATCC25923, MRSA ST30 or ST239, the combined use of ECG and kuraridin with vancomycin could significantly reduce bacterial counts. CONCLUSIONS: The present findings reveal the potential of ECG and kuraridin combination as a non-toxic herbal and antibiotics combination for MRSA treatment with antibacterial and anti-inflammatory activities.

8.
Inflamm Res ; 71(10-11): 1261-1270, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35916930

ABSTRACT

OBJECTIVES: We employed the co-culture of CD34+ stem cell-derived human mast cells (HMC) and human monocyte-derived osteoclast precursors to evaluate if mast cells contribute to the pathogenesis of osteoporosis through regulation of osteoclast proliferation and activation. METHODS: Mature HMC and osteoclast precursors were cultured from monocytes isolated from human buffy coat. The osteoclast precursors were incubated with HMC or receptor activator of nuclear factor kappa-B ligand (RANKL) for a week prior to determination of osteoclast maturation through characterization by their morphology and tartrate resistant acid phosphatase (TRAP) expression. The bone absorption activity was determined by pit formation on osteo-assay plate. RESULTS: Mature osteoclasts were identified following co-culture of osteoclast precursors with HMC for one week in the absence of RANKL and they were capable of bone resorption. These actions of HMC on osteoclasts were not affected by mast cell activators such anti-IgE or substance P but could be reversed by osteoprotegerin (OPG) in the co-culture system suggesting the involvement of RANKL. The expression of RANKL on the cell surface of HMC was confirmed by flow cytometry and the density was not affected by activation of HMC. CONCLUSION: Our study provided direct evidence confirming the initiation of osteoclast proliferation and activation by mast cells through cell surface RANKL suggesting that mast cells may contribute to bone destruction in pathological conditions such as osteoporosis.


Subject(s)
Mast Cells , Osteoporosis , Humans , Cell Differentiation , Cells, Cultured , Mast Cells/metabolism , Membrane Glycoproteins/metabolism , NF-kappa B/metabolism , Osteoclasts , Osteogenesis , Osteoporosis/metabolism , Osteoprotegerin/metabolism , RANK Ligand/metabolism , Receptor Activator of Nuclear Factor-kappa B/metabolism
9.
Cell Mol Immunol ; 19(2): 245-259, 2022 02.
Article in English | MEDLINE | ID: mdl-34848868

ABSTRACT

We sought to examine the regulatory effect of Meteorin-ß (Metrnß)/Meteorin like (Metrnl)/IL-41 on lung inflammation in allergic asthma. We found that Metrnß was elevated significantly in asthmatic patients and in mice with allergic asthma induced by house dust mite (HDM) extract. Upon exposure to HDM, Metrnß was secreted predominantly by airway epithelial cells and inflammatory cells, including macrophages and eosinophils. The increased Metrnß effectively blocked the development of airway hyperreactivity (AHR) and decreased inflammatory cell airway infiltration and type 2 cytokine production, which was associated with downregulated DC-mediated adaptive immune responses. Moreover, Metrnß impaired the maturation and function of bone marrow-derived dendritic cells in vitro. Asthmatic mice adoptively transferred with dendritic cells isolated from Metrnß-treated allergic mice displayed decreased AHR, airway inflammation, and lung injury. Metrnß also displayed anti-inflammatory properties in immunodeficient SCID mice with allergic asthma and in in vitro 3D ALI airway models. Moreover, blockade of Metrnß by anti-Metrnß antibody treatment promoted the development of allergic asthma. These results revealed the unappreciated protective roles of Metrnß in alleviating DC-mediated Th2 inflammation in allergic asthma, providing the novel treatment strategy of therapeutic targeting of Metrnß in allergic asthma.


Subject(s)
Asthma , Dendritic Cells , Allergens , Animals , Disease Models, Animal , Humans , Inflammation/metabolism , Mice , Mice, SCID , Pyroglyphidae , Th2 Cells
10.
Environ Sci Technol ; 56(1): 535-545, 2022 01 04.
Article in English | MEDLINE | ID: mdl-34935352

ABSTRACT

Membrane distillation (MD) is a promising technology for the treatment of high salinity wastewater using a hydrophobic membrane; however, the occurrence of wetting due to surfactants in polluted or low surface tension liquid impedes MD application. Common monitoring approaches, such as conductivity and flux measurement, cannot explain the wetting phenomenon that occurs during the wetting process in detail. Recently, impedance spectroscopy has been proposed for early wetting detection, as it depends on the change of water/air composition in the membrane pores. An earlier and larger variation was observed with precise signal detection. In this study, we proposed an analytical approach to estimate the wetting front, which is the average feed intrusion distance, by the impedance value recorded in real-time operation. With this proposed approach, the wetting mechanism in the presence of a surfactant and the effect of pore size on a commercial polyvinylidene fluoride membrane could be quantified, which cannot be explained in detail using conductivity and flux measurements.


Subject(s)
Distillation , Water Purification , Dielectric Spectroscopy , Membranes, Artificial , Water Purification/methods , Wettability
11.
Pharmaceutics ; 13(9)2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34575478

ABSTRACT

High prevalence rates of methicillin-resistant Staphylococcus aureus (MRSA) and lack of effective antibacterial treatments urge discovery of alternative therapeutic modalities. The advent of antibacterial photodynamic therapy (aPDT) is a promising alternative, composing rapid, nonselective cell destruction without generating resistance. We used a panel of clinically relevant MRSA to evaluate hypericin (Hy) and pheophobide a (Pa)-mediated PDT with clinically approved methylene blue (MB). We translated the promising in vitro anti-MRSA activity of selected compounds to a full-thick MRSA wound infection model in mice (in vivo) and the interaction of aPDT innate immune system (cytotoxicity towards neutrophils). Hy-PDT consistently displayed lower minimum bactericidal concentration (MBC) values (0.625-10 µM) against ATCC RN4220/pUL5054 and a whole panel of community-associated (CA)-MRSA compared to Pa or MB. Interestingly, Pa-PDT and Hy-PDT topical application demonstrated encouraging in vivo anti-MRSA activity (>1 log10 CFU reduction). Furthermore, histological analysis showed wound healing via re-epithelization was best in the Hy-PDT group. Importantly, the dark toxicity of Hy was significantly lower (p < 0.05) on neutrophils compared to Pa or MB. Overall, Hy-mediated PDT is a promising alternative to treat MRSA wound infections, and further rigorous mechanistic studies are warranted.

12.
Int J Mol Sci ; 22(4)2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33546184

ABSTRACT

Our understanding on the immunological roles of pathogen recognition in innate immunity has vastly increased over the past 20 years. Nucleotide-binding oligomerization domain (NOD)-like receptors (NLR) are cytosolic pattern recognition receptors (PRR) that are responsible for sensing microbial motifs and endogenous damage signals in mammalian cytosol for immune surveillance and host defense. The accumulating discoveries on these NLR sensors in allergic diseases suggest that the pathogenesis of allergic diseases may not be confined to the adaptive immune response. Therapy targeting NLR in murine models also shields light on its potential in the treatment of allergies in man. In this review, we herein summarize the recent understanding of the role of NLR sensors and their molecular mechanisms involved in allergic inflammation, including atopic dermatitis and allergic asthma.


Subject(s)
Hypersensitivity/metabolism , NLR Proteins/immunology , Animals , Humans , Hypersensitivity/immunology , Inflammasomes/metabolism , NLR Proteins/metabolism
13.
Cell Death Dis ; 12(1): 53, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33414457

ABSTRACT

Interleukin-38 has recently been shown to have anti-inflammatory properties in lung inflammatory diseases. However, the effects of IL-38 in viral pneumonia remains unknown. In the present study, we demonstrate that circulating IL-38 concentrations together with IL-36α increased significantly in influenza and COVID-19 patients, and the level of IL-38 and IL-36α correlated negatively and positively with disease severity and inflammation, respectively. In the co-cultured human respiratory epithelial cells with macrophages to mimic lung microenvironment in vitro, IL-38 was able to alleviate inflammatory responses by inhibiting poly(I:C)-induced overproduction of pro-inflammatory cytokines and chemokines through intracellular STAT1, STAT3, p38 MAPK, ERK1/2, MEK, and NF-κB signaling pathways. Intriguingly, transcriptomic profiling revealed that IL-38 targeted genes were associated with the host innate immune response to virus. We also found that IL-38 counteracts the biological processes induced by IL-36α in the co-culture. Furthermore, the administration of recombinant IL-38 could mitigate poly I:C-induced lung injury, with reduced early accumulation of neutrophils and macrophages in bronchoalveolar lavage fluid, activation of lymphocytes, production of pro-inflammatory cytokines and chemokines and permeability of the alveolar-epithelial barrier. Taken together, our study indicates that IL-38 plays a crucial role in protection from exaggerated pulmonary inflammation during poly(I:C)-induced pneumonia, thereby providing the basis of a novel therapeutic target for respiratory viral infections.


Subject(s)
COVID-19/metabolism , Immunity, Innate/drug effects , Influenza, Human/metabolism , Interleukins/pharmacology , Pneumonia/prevention & control , Poly I-C/toxicity , Respiratory System/immunology , Animals , COVID-19/immunology , COVID-19/virology , Cytokines/metabolism , Epithelial Cells/immunology , Epithelial Cells/metabolism , Epithelial Cells/pathology , Humans , Influenza A virus/isolation & purification , Influenza, Human/immunology , Influenza, Human/virology , Interleukin-1/blood , Interleukins/blood , Male , Mice , Mice, Inbred C57BL , Pneumonia/chemically induced , Pneumonia/immunology , Pneumonia/pathology , Respiratory System/metabolism , Respiratory System/pathology , SARS-CoV-2/isolation & purification
14.
Molecules ; 27(1)2021 Dec 31.
Article in English | MEDLINE | ID: mdl-35011470

ABSTRACT

Allergic rhinitis (AR) is a highly prevalent allergic disease induced by immunoglobulin (Ig) E-mediated hypersensitivity reaction at the nasal epithelium against inhaled allergens. Previous studies have demonstrated that Pentaherbs formula (PHF), a modified herbal formula comprising five herbal medicines (Flos Lonicerae, Herba Menthae, Cortex Phellodendri, Cortex Moutan and Rhizoma Atractylodis), could suppress various immune effector cells to exert anti-inflammatory and anti-allergic effects in allergic asthma and atopic dermatitis. The present study aimed to further determine the anti-inflammatory activities of PHF in an ovalbumin (OVA)-induced AR BALB/c mouse model. Nasal symptoms such as sneezing and nose rubbing were recorded and the serum total IgE and OVA-specific IgG1, as well as interleukin (IL)-4, IL-5, IL-10, IL-13, chemokines CXCL9 CXCL10, and tumor necrosis factor (TNF)-α concentrations in nasal lavage fluid (NALF) were measured during different treatments. Effects of PHF on the expression of inflammatory mediators in the sinonasal mucosa were quantified using real-time QPCR. PHF was found to suppress allergic symptoms, infiltration of inflammatory cells, and hyperplasia of goblet cells in the nasal epithelium of the OVA-induced AR mice. PHF could reduce OVA-specific IgG1 level in serum, and TNF-α and IL-10 in nasal lavage fluid (NALF), significantly up-regulate the splenic regulatory T (Treg) cell level, increase the Type 1 helper T cell (Th1)/Type 2 helper T cell (Th2) ratio, and reduce the Th17 cells (all p < 0.05). PHF could also alleviate in situ inflammation in sinonasal mucosa of OVA-induced AR mice. In conclusion, oral treatment of PHF showed immuno-modulatory activities in the OVA-induced AR mice by regulating the splenic T cell population to suppress the nasal allergy symptoms and modulating inflammatory mediators, implicating that PHF could be a therapeutic strategy for allergic rhinitis.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Immunologic Factors/pharmacology , Lymphocyte Activation/drug effects , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/immunology , Allergens/immunology , Animals , Anti-Inflammatory Agents/chemistry , Cytokines/metabolism , Disease Models, Animal , Herbal Medicine , Immunologic Factors/chemistry , Immunomodulation/drug effects , Mice , Nasal Lavage Fluid/immunology , Nasal Mucosa/drug effects , Nasal Mucosa/immunology , Nasal Mucosa/metabolism , Ovalbumin/administration & dosage , Plant Extracts/chemistry , Rhinitis, Allergic/drug therapy , Rhinitis, Allergic/etiology , Rhinitis, Allergic/pathology , Spleen/drug effects , Spleen/immunology , Spleen/metabolism , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Th2 Cells/drug effects , Th2 Cells/immunology , Th2 Cells/metabolism
15.
Front Med (Lausanne) ; 8: 815075, 2021.
Article in English | MEDLINE | ID: mdl-35111787

ABSTRACT

Dry eye is currently one of the most common ocular surface disease. It can lead to ocular discomfort and even cause visual impairment, which greatly affects the work and quality of life of patients. With the increasing incidence of dry eye disease (DED) in recent years, the disease is receiving more and more attention, and has become one of the hot research fields in ophthalmology research. Recently, with the in-depth research on the etiology, pathogenesis and treatment of DED, it has been shown that defects in immune regulation is one of the main pathological mechanisms of DED. Since the non-specific and specific immune response of the ocular surface are jointly regulated, a variety of immune cells and inflammatory factors are involved in the development of DED. The conventional treatment of DED is the application of artificial tears for lubricating the ocular surface. However, for moderate-to-severe DED, treatment with anti-inflammatory drugs is necessary. In this review, the immunomodulatory mechanisms of DED and the latest research progress of its related treatments including Chinese medicine will be discussed.

16.
Mater Sci Eng C Mater Biol Appl ; 118: 111537, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33255090

ABSTRACT

Aseptic loosening and bacterial infections are the two main causes of failure for metallic implants used for joint replacement. A coating that is both bioactive and possesses antimicrobial properties may address such shortcomings and improve the performance of the implant. We have sought to study the properties of combining hydroxyapatite-based nanoparticles or coatings with baicalein, a plant-extracted molecule with both antibacterial and antioxidant properties. (B-type) carbonated hydroxyapatite nanoparticles prepared by a chemical wet method could subsequently adsorbed by soaking in a baicalein solution. The amount of adsorbed baicalein was determined to be 63 mg.g-1 by thermogravimetric measurements. In a second approach, baicalein was adsorbed on a biomimetic calcium-deficient hydroxyapatite planar coating (12 µm thick) deposited on Ti6Al4V alloy from an aqueous solution of calcium, phosphate, sodium and magnesium salts. Soaking of the hydroxyapatite coated on titanium alloy in a baicalein solution induced partial dissolution/remodeling of the upper surface of the coating. However, the observed remodeling of the surface was much more pronounced in the presence of a baicalein solution, compared to pure water. The presence of adsorbed baicalein on the HAp layer, although it could not be precisely quantified, was assessed by XPS and fluorescence analysis. Planar coatings exhibited significant antibacterial properties against Staphylococcus epidermidis. Baicalein-modified nanoparticles exhibited significant antioxidant properties. These results illustrate the potential of hydroxyapatite used as a carrier for natural biologically-active molecules and also discuss the challenges associated with their applications as antibacterial agents.


Subject(s)
Durapatite , Nanoparticles , Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Coated Materials, Biocompatible/pharmacology , Flavanones , Surface Properties , Titanium
17.
Curr Med Chem ; 28(21): 4283-4294, 2021.
Article in English | MEDLINE | ID: mdl-33292110

ABSTRACT

BACKGROUND: We report herein the synthesis of a novel dicationic boron dipyrromethene derivative (compound 3) which is symmetrically substituted with two trimethylammonium styryl groups. METHODS: The antibacterial photodynamic activity of compound 3 was determined against sixteen methicillin-resistant Staphylococcus aureus (MRSA) strains, including four ATCC type strains (ATCC 43300, ATCC BAA-42, ATCC BAA-43, and ATCC BAA-44), two mutant strains [AAC(6')-APH(2") and RN4220/pUL5054], and ten nonduplicate clinical strains of hospital- and community-associated MRSA. Upon light irradiation, the minimum bactericidal concentrations of compound 3 were in the range of 1.56-50 µM against all the sixteen MRSA strains. Interestingly, compound 3 was not only more active than an analogue in which the ammonium groups are not directly connected to the n-conjugated system (compound 4), but also showed significantly higher (p < 0.05) antibacterial potency than the clinically approved photosensitizer methylene blue. The skin irritation of compound 3 during topical application was tested on human 3-D skin constructs and proven to be non-irritant in vivo at concentrations below 1.250 mM. In the murine MRSA infected wound study, the colony forming unit reduction of compound 3 + PDT group showed significantly (p < 0.05) higher value (>2.5 log10) compared to other test groups except for the positive control. CONCLUSION: In conclusion, the present study provides a scientific basis for future development of compound 3 as a potent photosensitizer for photodynamic therapy for MRSA wound infection.


Subject(s)
Anti-Infective Agents , Methicillin-Resistant Staphylococcus aureus , Photochemotherapy , Animals , Anti-Bacterial Agents/pharmacology , Boron , Humans , Mice , Microbial Sensitivity Tests , Photosensitizing Agents/therapeutic use , Porphobilinogen/analogs & derivatives
18.
Phytother Res ; 35(4): 2108-2118, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33205491

ABSTRACT

The biological activities of water-soluble components of edible mushroom Rubinoboletus ballouii (RB) were seldom reported. Polysaccharides of RB (RBP) were prepared and well-characterized using chemical analyses. The immunomodulatory properties of RBP were investigated using human monocyte-derived dendritic cells (moDC) in vitro, and cyclophosphamide (CTX)-induced immunosuppressive mouse model. Results showed that RBP was found to contain 80.6% (w/w) of neutral sugars including D-fucose, D-mannose, D-glucose and D-galactose (1.7:1.4:1.0:1.8), and 12.5% (w/w) of proteins, which composed of glutamine, threonine, serine, etc. RBP could promote the maturation of moDC and increase the secretion of IL-12p40, IL-10, and TNF-α. Furthermore, the stimulation of IL-12p40 production was inhibited by pretreatment with toll-like receptor (TLR)-4 blocker or NF-κB pathway blocker, suggesting that the activation of moDC by RBP was mediated through NF-κB pathway via TLR-4 receptor. On the other hand, in CTX-treated mice, RBP restored the loss of CD34bright CD45dim hematopoietic stem cells and increased IL-2 production in sera and splenocytes culture supernatant, as well as up-regulated the percentage of CD4+ T helper lymphocyte in mice splenocytes. These findings strongly suggested that RBP are the active ingredients of RB responsible for its immunostimulatory actions and deserved to be further investigated as cancer supplements.


Subject(s)
Basidiomycota/chemistry , NF-kappa B/metabolism , Polysaccharides/therapeutic use , Toll-Like Receptor 4/metabolism , Animals , Humans , Mice , Polysaccharides/pharmacology
19.
J Leukoc Biol ; 108(5): 1615-1629, 2020 11.
Article in English | MEDLINE | ID: mdl-32794339

ABSTRACT

Tuberculosis (TB), a highly infectious air-borne disease, has remained a global health problem. Conventional treatment and preventions such as antibiotics and Bacilli Calmette-Guerin (BCG) vaccine can be unreliable. In view of the increasing prevalence of anti-TB drug resistance, adjunctive therapy may be necessary to shorten the recovery time. We have previously shown that flavonoids in the medicinal herb Sophora flavescens exhibit anti-inflammatory and bactericidal activities. The aim of this study was to investigate the molecular and cellular characteristics of flavonoids of S. flavescens (FSF) in BCG-stimulated macrophages for assessing their roles in anti-inflammation and autophagy. Mouse alveolar macrophage (MH-S) cell line and primary mouse peritoneal macrophages were stimulated in vitro with heat-inactivated BCG and treated with FSF, with or without autophagy inhibitor Bafilomycin A1 (BafA1). Gene expression was analyzed using quantitative PCR, and cytokine/chemokine release was analyzed by Milliplex assay and ELISA. Autophagy-related proteins were quantified by Western blot and flow cytometry, and autophagolysosomes were detected using fluorescence microscopy. In both MH-S cell line and mouse peritoneal macrophages stimulated by heat-inactivated BCG, FSF was found to up-regulate autophagy-related proteins microtubule-associated protein 1A/1B-light chain 3 (LC3) and protein 62 (p62), and suppress the induced proinflammatory cytokine TNF-α, CCL5, and IL-6. FSF actively modulates immune processes through suppressing BCG-mediated inflammation by promoting autophagy in MH-S cells and mouse peritoneal macrophages. We suggest that FSF may be useful as an adjunctive therapeutic agent for TB infection by modulating cell survival through autophagy and reducing inflammation.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Autophagy/drug effects , Flavonoids/pharmacology , Macrophages, Peritoneal/immunology , Mycobacterium bovis/immunology , Sophora/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Autophagy/immunology , Cell Line , Flavonoids/chemistry , Macrophages, Peritoneal/pathology , Mice , Monokines/immunology
20.
Emerg Microbes Infect ; 9(1): 1628-1637, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32619386

ABSTRACT

Antimicrobial photodynamic therapy (aPDT) is an innovative approach to combat multi-drug resistant bacteria. It is known that cationic Zn(II) phthalocyanines (ZnPc) are effective in mediating aPDT against methicillin-resistant Staphylococcus aureus (MRSA). Here we used ZnPc-based photosensitizer named ZnPcE previously reported by our research group to evaluate its aPDT efficacy against broad spectrum of clinically relevant MRSAs. Remarkably, in vitro anti-MRSA activity was achieved using near-infrared (NIR, >610 nm) light with minimal bactericidal concentrations ranging <0.019-0.156 µM against the panel of MRSAs. ZnPcE was not only significantly (p < .05) more potent than methylene blue, which is a clinically approved photosensitizer but also demonstrated low cytotoxicity against human fibroblasts cell line (Hs-27) and human immortalized keratinocytes cell line (HaCaT). The toxicity was further evaluated on human 3-D skin constructs and found ZnPcE did not manifest in vivo skin irritation at ≤7.8 µM concentration. In the murine MRSA wound model, ZnPcE with PDT group demonstrated > 4 log10 CFU reduction and the value is significantly higher (p < .05) than all test groups except positive control. To conclude, results of present study provide a scientific basis for future clinical evaluation of ZnPcE-PDT on MRSA wound infection.


Subject(s)
Indoles/administration & dosage , Methicillin-Resistant Staphylococcus aureus/drug effects , Organometallic Compounds/administration & dosage , Photochemotherapy/methods , Photosensitizing Agents/administration & dosage , Staphylococcal Infections/drug therapy , Administration, Topical , Animals , Cell Line , Disease Models, Animal , Humans , Indoles/chemistry , Indoles/pharmacology , Isoindoles , Male , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Mice , Microbial Sensitivity Tests , Molecular Structure , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Zinc Compounds
SELECTION OF CITATIONS
SEARCH DETAIL
...