Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nanoscale ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012322

ABSTRACT

The expansion of the textile industry and improvements in living standards have led to increased cotton textile production, resulting in a rise in textile waste, with cotton accounting for 24% of total textile waste. Effective waste management through recycling and reuse is crucial to reducing global waste production. Nanocellulose has diverse applications in environmental, geotechnical, food packaging, and biomedical engineering areas. As interest in nanocellulose's unique properties grows, cotton-based textile waste emerges as a promising source for nanocellulose development. However, there is a notable lack of comprehensive reviews on the extraction of nanocellulose from textile waste as a sustainable biomaterial. This paper aims to address this gap by exploring current extraction processes, properties, and recent applications of nanocellulose derived from textile waste. We discussed (1) the potential of nanocellulose resources from different textile wastes, (2) a comparison of the various extraction methods, (3) the functionalization technology and the potential application of such nanocellulose in the textile industry, and (4) the life cycle assessment (LCA) and potential gap of the current technology. It also emphasizes the potential reintegration of extracted nanocellulose into the textile industry to manufacture high-value products, thus completing the loop and strengthening the circular economy.

2.
ACS Appl Mater Interfaces ; 16(5): 5337-5354, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38284988

ABSTRACT

The use of electrically conductive polymers (CPs) in the development of electronic devices has attracted significant interest due to their unique intrinsic properties, which result from the synergistic combination of physicochemical properties in conventional polymers with the electronic properties of metals or semiconductors. Most conventional methods adopted for the fabrication of devices with nonplanar morphologies are still challenged by the poor ionic/electronic mobility of end products. Additive manufacturing (AM) brings about exciting prospects to the realm of CPs by enabling greater design freedom, more elaborate structures, quicker prototyping, relatively low cost, and more environmentally friendly electronic device creation. A growing variety of AM technologies are becoming available for three-dimensional (3D) printing of conductive devices, i.e., vat photopolymerization (VP), material extrusion (ME), powder bed fusion (PBF), material jetting (MJ), and lamination object manufacturing (LOM). In this review, we provide an overview of the recent research progress in the area of CPs developed for AM, which advances the design and development of future electronic devices. We consider different AM techniques, vis-à-vis, their development progress and respective challenges in printing CPs. We also discuss the material requirements and notable advances in 3D printing of CPs, as well as their potential electronic applications including wearable electronics, sensors, energy storage and conversion devices, etc. This review concludes with an outlook on AM of CPs.

3.
Polymers (Basel) ; 15(21)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37959886

ABSTRACT

Self-healing polymers have received widespread attention due to their ability to repair damage autonomously and increase material stability, reliability, and economy. However, the processability of self-healing materials has yet to be studied, limiting the application of rich self-healing mechanisms. Additive manufacturing effectively improves the shortcomings of conventional processing while increasing production speed, accuracy, and complexity, offering great promise for self-healing polymer applications. This article summarizes the current self-healing mechanisms of self-healing polymers and their corresponding additive manufacturing methods, and provides an outlook on future developments in the field.

4.
Biomacromolecules ; 23(9): 3698-3712, 2022 09 12.
Article in English | MEDLINE | ID: mdl-35998618

ABSTRACT

Injectable hydrogels have gained considerable attention, but they are typically mechanically weak and subject to repeated physiological stresses in the body. Herein, we prepared polyurethane diacrylate (EPC-DA) hydrogels, which are injectable and can be photocrosslinked into fatigue-resistant implants. The mechanical properties can be tuned by changing photocrosslinking conditions, and the hybrid-crosslinked EPC-DA hydrogels exhibited high stability and sustained release properties. In contrast to common injectable hydrogels, EPC-DA hydrogels exhibited excellent antifatigue properties with >90% recovery during cyclic compression tests and showed shape stability after application of force and immersion in an aqueous buffer for 35 days. The EPC-DA hydrogel formed a shape-stable hydrogel depot in an ex vivo porcine skin model, with establishment of a temporary soft gel before in situ fixing by UV crosslinking. Hybrid crosslinking using injectable polymeric micelles or nanoparticles may be a general strategy for producing hydrogel implants resistant to physiological stresses.


Subject(s)
Hydrogels , Mechanical Phenomena , Animals , Fatigue , Hydrogels/pharmacology , Micelles , Polymers , Swine
5.
Article in English | MEDLINE | ID: mdl-35575697

ABSTRACT

Hydrogels have become popular in biomedical applications, but their applications in muscle and tendon-like bioactuators have been hindered by low toughness and elastic modulus. Recently, a significant toughness enhancement of a single hydrogel network has been successfully achieved by the Hofmeister effect. However, little has been conducted for the Hofmeister effect on the hybrid hydrogels, although they have a special network structure consisting of two types of polymer components. Herein we fabricated hybrid poly(2-hydroxyethyl methacrylate) (PHEMA)-gelatin hydrogels with high mechanical performance and stimuli response. An ideal bicontinuous phase separation structure of the PHEMA (rigid) and gelatin (ductile) was observed with embedded microdisc-like gelatin in the three-dimensional polymeric network of PHEMA. A significant enhancement of mechanical performance by the Hofmeister effect was attributed to the salting-out-induced stronger and closer interphase interaction between PHEMA and gelatin. A superior comprehensive mechanical performance with fracture elongation over 650%, tensile strength of 5.2 MPa, toughness of 13.5 MJ/m3, and modulus of 45.6 MPa was achieved with the salting-out effect. More specifically, the synergy of phase separation and Hofmeister effect enable the hydrogel to contract with an enhanced modulus in high-concentration salt solutions, while the same hydrogel swells and relaxes in dilute solutions, exhibiting an ionic stimulus response and excellent shape-memory properties like those of most artificial muscle. This is manifested in highly stretched, twisted, and knotted hydrogel strips that can rapidly recover their original shape in a dilute salt solution. The high strength and modulus, ionic stimuli response, and shape memory property make the hybrid hydrogel a promising material for bioactuators in various biomedical applications.

6.
Biomaterials ; 178: 281-292, 2018 09.
Article in English | MEDLINE | ID: mdl-29945065

ABSTRACT

Cartilage cannot self-repair and thus regeneration is a promising approach to its repair. Here we developed new electrospun nanofibers, made of poly (ε-caprolactone)/polytetrahydrofuran (PCL-PTHF urethane) and collagen I from calf skin (termed PC), to trigger the chondrogenic differentiation of mesenchymal stem cells (MSCs) and the cartilage regeneration in vivo. We found that the PC nanofibers had a modulus (4.3 Mpa) lower than the PCL-PTHF urethane nanofibers without collagen I from calf skin (termed P) (6.8 Mpa) although both values are within the range of the modulus of natural cartilage (1-10 MPa). Both P and PC nanofibers did not show obvious difference in the morphology and size. Surprisingly, in the absence of the additional chondrogenesis inducers, the softer PC nanofibers could induce the chondrogenic differentiation in vitro and cartilage regeneration in vivo more efficiently than the stiffer P nanofibers. Using mRNA-sequence analysis, we found that the PC nanofibers outperformed P nanofibers in inducing chondrogenesis by specifically blocking the NF-kappa B signaling pathway to suppress inflammation. Our work shows that the PC nanofibers can serve as building blocks of new scaffolds for cartilage regeneration and provides new insights on the effect of the mechanical properties of the nanofibers on the cartilage regeneration.


Subject(s)
Butylene Glycols/pharmacology , Cartilage/physiology , Chondrogenesis/drug effects , Collagen/pharmacology , NF-kappa B/metabolism , Nanofibers/chemistry , Polyesters/pharmacology , Polymers/pharmacology , Polyurethanes/pharmacology , Animals , Butylene Glycols/chemistry , Cartilage/drug effects , Cattle , Cell Differentiation/drug effects , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/ultrastructure , Nanofibers/ultrastructure , Polyesters/chemistry , Polymers/chemistry , Polyurethanes/chemistry , Rats, Sprague-Dawley , Regeneration/drug effects , Signal Transduction/drug effects , Transcriptome/genetics
7.
Chem Asian J ; 2018 Jun 20.
Article in English | MEDLINE | ID: mdl-29924504

ABSTRACT

Dilute acid polymerizes degassed, aqueous acrylamide with concomitant gelation, without the need for added free radical initiator or cross-linking agent. This reaction is accelerated by sonication or UV irradiation, but inhibited by adventitious oxygen or the addition of a free radical inhibitor, suggesting an acid-accelerated free radical process. The resulting hydrogels are thixotropic in nature and partially disrupted by the addition of chaotropic agents, indicating the importance of hydrogen bonding to the 3D network. This discovery was made while trying to prepare pectin-polyacrylamide hydrogels. We observed that pectin initiated the gelation of acrylamide, but only if the aqueous pectin samples had a pH lower than ca. 5.

8.
Polymers (Basel) ; 10(1)2018 Jan 18.
Article in English | MEDLINE | ID: mdl-30966125

ABSTRACT

In this study, we report the synthesis and characterisation of a thermogelling poly(carbonate urethane) system comprising poly(ethylene glycol) (PEG), poly(propylene glycol) (PPG) and poly(polytetrahydrofuran carbonate) (PTHF carbonate). The incorporation of PTHF carbonate allowed for the control of the lower critical solution temperature (LCST) and decreased critical gelation concentration (CGC) of the thermogels significantly. In addition, the as-prepared thermogels displayed low toxicity against HepG2, L02 and HEK293T cells. Drug release studies were carried out using doxorubicin (Dox). Studies conducted using nude mice models with hepatocellular carcinoma revealed that the Dox-loaded poly(PEG/PPG/PTHF carbonate urethane) thermogels showed excellent in vivo anti-tumour performance and effectively inhibited tumour growth in the tested model.

9.
ACS Omega ; 2(12): 8959-8968, 2017 Dec 31.
Article in English | MEDLINE | ID: mdl-30023596

ABSTRACT

Natural polysaccharide pectin has for the first time been grafted with polyhydroxybutyrate (PHB) via ring-opening polymerization of ß-butyrolactone. This copolymer, pectin-polyhydroxybutyrate (pec-PHB), was blended with PHB in various proportions and electrospun to produce nanofibers that exhibited uniform and bead-free nanostructures, suggesting the miscibility of PHB and pec-PHB. These nanofiber blends exhibited reduced fiber diameters from 499 to 336-426 nm and water contact angles from 123.8 to 88.2° on incorporation of pec-PHB. They also displayed 39-335% enhancement of elongation at break relative to pristine PHB nanofibers. pec-PHB nanofibers were found to be noncytotoxic and biocompatible. Human retinal pigmented epithelium (ARPE-19) cells were seeded onto pristine PHB and pec-PHB nanofibers as scaffold and showed good proliferation. Higher proportions of pec-PHB (pec-PHB10 and pec-PHB20) yielded higher densities of cells with similar characteristics to normal RPE cells. We propose, therefore, that nanofibers of pec-PHB have significant potential as retinal tissue engineering scaffold materials.

10.
Colloids Surf B Biointerfaces ; 148: 557-565, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27690245

ABSTRACT

A porous shape memory scaffold with both biomimetic structures and electrical conductivity properties is highly promising for nerve tissue engineering applications. In this study, a new shape memory polyurethane polymer which consists of inorganic polydimethylsiloxane (PDMS) segments with organic poly(ε-caprolactone) (PCL) segments was synthesized. Based on this poly(PCL/PDMS urethane), a series of electrically conductive nanofibers were electrospun by incorporating different amounts of carbon-black. Our results showed that after adding carbon black into nanofibers, the fiber diameters increased from 399±76 to 619±138nm, the crystallinity decreased from 33 to 25% and the resistivity reduced from 3.6 GΩ/mm to 1.8 kΩ/mm. Carbon black did not significantly influence the shape memory properties of the resulting nanofibers, and all the composite nanofibers exhibited decent shape recovery ratios of >90% and shape fixity ratios of >82% even after 5 thermo-mechanical cycles. PC12 cells were cultured on the shape memory nanofibers and the composite scaffolds showed good biocompatibility by promoting cell-cell interactions. Our study demonstrated that the poly(PCL/PDMS urethane)/carbon-black nanofibers with shape memory properties could be potentially used as smart 4-dimensional (4D) scaffolds for nerve tissue regeneration.


Subject(s)
Biocompatible Materials/chemistry , Dimethylpolysiloxanes/chemistry , Electric Conductivity , Nanofibers/chemistry , Polyesters/chemistry , Animals , Cell Communication , Electrochemical Techniques/methods , Microscopy, Electron, Scanning , Nanofibers/ultrastructure , Nerve Regeneration , PC12 Cells , Polyurethanes/chemistry , Porosity , Rats , Soot/chemistry , Temperature , Tissue Engineering/methods , Tissue Scaffolds/chemistry
11.
ACS Appl Mater Interfaces ; 8(16): 10070-87, 2016 04 27.
Article in English | MEDLINE | ID: mdl-27018814

ABSTRACT

Shape memory polymers (SMPs) are smart and adaptive materials able to recover their shape through an external stimulus. This functionality, combined with the good biocompatibility of polymers, has garnered much interest for biomedical applications. In this review, we discuss the design considerations critical to the successful integration of SMPs for use in vivo. We also highlight recent work on three classes of SMPs: shape memory polymers and blends, shape memory polymer composites, and shape memory hydrogels. These developments open the possibility of incorporating SMPs into device design, which can lead to vast technological improvements in the biomedical field.


Subject(s)
Equipment Design , Polymers
12.
Biomed Mater ; 11(1): 015007, 2016 Feb 02.
Article in English | MEDLINE | ID: mdl-26836757

ABSTRACT

A porous shape memory scaffold with biomimetic architecture is highly promising for bone tissue engineering applications. In this study, a series of new shape memory polyurethanes consisting of organic poly(ε-caprolactone) (PCL) segments and inorganic polydimethylsiloxane (PDMS) segments in different ratios (9 : 1, 8 : 2 and 7 : 3) was synthesised. These PCL-PDMS copolymers were further engineered into porous fibrous scaffolds by electrospinning. With different ratios of PCL: PDMS, the fibers showed various fiber diameters, thermal behaviour and mechanical properties. Even after being processed into fibrous structures, these PCL-PDMS copolymers maintained their shape memory properties, and all the fibers exhibited excellent shape recovery ratios of >90% and shape fixity ratios of >92% after 7 thermo-mechanical cycles. Biological assay results corroborated that the fibrous PCL-PDMS scaffolds were biocompatible by promoting osteoblast proliferation, functionally enhanced biomineralization-relevant alkaline phosphatase expression and mineral deposition. Our study demonstrated that the PCL-PDMS fibers with excellent shape memory properties are promising substrates as bioengineered grafts for bone regeneration.


Subject(s)
Bone Substitutes/chemical synthesis , Dimethylpolysiloxanes/chemistry , Nanofibers/chemistry , Osteoblasts/physiology , Polyesters/chemical synthesis , Tissue Scaffolds , Cell Proliferation/physiology , Cell Survival/physiology , Cells, Cultured , Elastic Modulus , Equipment Design , Equipment Failure Analysis , Hot Temperature , Humans , Nanofibers/ultrastructure , Osteoblasts/cytology , Stress, Mechanical , Tensile Strength , Tissue Engineering/instrumentation , Tissue Engineering/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...