Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmacol Res ; 206: 107254, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38862069

ABSTRACT

Gut damage during carbapenem-resistant and hypervirulent Klebsiella pneumoniae (CR-HvKP) infection is associated with a death risk. Understanding the mechanisms by which CR-HvKP causes intestinal damage and gut microbiota alteration, and the impact on immunity, is crucial for developing therapeutic strategies. This study investigated if gastrointestinal tract damage and disruption of gut microbiota induced by CR-HvKP infection undermined host immunity and facilitated multi-organ invasion of CR-HvKP; whether the therapeutic value of the rifampicin (RIF) and zidovudine (ZDV) combination was attributed to their ability to repair damages and restore host immunity was determined. A sepsis model was utilized to assess the intestinal pathological changes. Metagenomic analysis was performed to characterize the alteration of gut microbiota. The effects of the RIF and ZDV on suppressing inflammatory responses and improving immune functions and gut microbiota were evaluated by immunopathological and transcriptomic analyses. Rapid colonic damage occurred upon activation of the inflammation signaling pathways during lethal infections. Gut inflammation compromised host innate immunity and led to a significant decrease in probiotics abundance, including Bifidobacterium and Lactobacillus. Treatment with combination drugs significantly attenuated the inflammatory response, up-regulated immune cell differentiation signaling pathways, and promoted the abundance of Bifidobacterium (33.40 %). Consistently, supplementation of Bifidobacterium alone delayed the death in sepsis model. Gut inflammation and disrupted microbiota are key disease features of CR-HvKP infection but can be reversed by the RIF and ZDV drug combination. The finding that these drugs can restore host immunity through multiple mechanisms is novel and deserves further investigation of their clinical application potential.

2.
EBioMedicine ; 101: 104998, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38340556

ABSTRACT

BACKGROUND: The epidemiological features of the Klebsiella pneumoniae causing bloodstream infections in Hong Kong and their potential threats to human health remained unknown. METHODS: K. pneumoniae strains collected from four hospitals in Hong Kong during the period of 2009-2018 were subjected to molecular typing, string test, antimicrobial susceptibility testing, whole genome sequencing and analysis. Clinical data of patients from whom these strains were isolated were analyzed retrospectively using univariate and multivariate logistic regression approaches. FINDINGS: The 240 Klebsiella spp. strains belonged to 123 different STs and 63 different capsule loci (KLs), with KL1 and KL2 being the major type. 86 out of 212 BSI-KP (40.6%) carried at least one of the virulence genes iuc, iro, rmpA or rmpA2. Virulence plasmid correlated well with the string test positive result, yet 8 strains without rmp genes were also hypermucoviscous, which was due to wzc mutation. The mortality rate of bloodstream infection patients was 43.0%. Univariant analysis showed that factors including renal replacement therapy (FDR adjusted p = 0.0007), mechanical ventilation (FDR adjusted p < 0.0001) and respiratory sepsis (FDR adjusted p < 0.0001) were found to pose the highest risk of death upon infection by Klebsiella spp. INTERPRETATION: This study revealed the high mortality rate and risk factors associated with bloodstream infections caused by K. pneumoniae in Hong Kong, which warrants immediate action to develop effective solution to tackle this problem. FUNDING: Theme Based Research Scheme (T11-104/22-R), Research Impact Fund (R5011-18 F) and Postdoctoral Fellowship (PDFS2223-1S09).


Subject(s)
Klebsiella Infections , Sepsis , Humans , Hong Kong/epidemiology , Klebsiella/genetics , Molecular Epidemiology , Retrospective Studies , Klebsiella Infections/drug therapy , Klebsiella Infections/epidemiology , Klebsiella pneumoniae/genetics , Anti-Bacterial Agents
3.
Microbiol Spectr ; 10(3): e0252821, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35604148

ABSTRACT

A plasmid that harbored the virulence factors highly like those of the virulence plasmid commonly found in clinical hypervirulent Klebsiella pneumoniae strains was detected in a foodborne Escherichia coli strain EC1108 and designated p1108-IncFIB. This virulent-like plasmid was found to be common in E. coli from various sources. To understand the contribution of this plasmid to the virulence of E. coli, plasmid p1108-IncFIB in strain EC1108 was first cured to generate strain EC1108-PC. The virulence plasmid p15WZ-82_Vir in Klebsiella pneumoniae strain 15WZ-82 was then transmitted to EC1108-PC to produce the transconjugant, EC1108-PC-TC to assess the contribution of this virulence plasmid to the virulence level of E. coli. During the process of conjugation, p15WZ-82_Vir was found to be evolved into p15WZ-82_int, which underwent homologous recombination with a plasmid encoding a carbapenemase gene, blaNDM-1, p1108-NDM, in EC1108-PC. Comparison between the level of virulence in the EC1108, EC1108-PC-TC, and EC1108-PC through serum and macrophage resistance assay, as well as animal experiments, confirmed that plasmid p1108-IncFIB encoded a high level of virulence in E. coli, yet the fusion plasmid derived from p15WZ-82_Vir did not encode virulence but instead imposed a high fitness cost in the E. coli strain EC1108-PC-TC. These findings indicate that E. coli strains carrying the virulence plasmid p1108-IncFIB in multidrug-resistant (MDR) strains may also impose serious public health threats like that of hypervirulent Klebsiella pneumoniae strains harboring the p15WZ-82_Vir plasmid. IMPORTANCE Acquisition of pLVPK-like virulence plasmid by Klebsiella pneumoniae converts it to hypervirulent K. pneumoniae (HvKP), which has become one of the most important clinical bacterial pathogens. The potential of transmission of this virulence plasmid and its contribution to the virulence of other Enterobacteriaceae, such as E. coli, are not clear yet. In this study, we showed that pLVPK-like virulence plasmid exhibited fitness costs and did not contribute to the virulence in E. coli. However, we identified a novel virulence plasmid, p1108-IncFIB, that encodes similar siderophore genes as those of pLVPK from a foodborne E. coli strain and showed that p1108-IncFIB encoded a high level of virulence in E. coli. BLAST of E. coli genomes from GenBank showed that these siderophore genes were widespread in clinical E. coli strains. Further studies are warranted to understand the impact of this plasmid in the control of clinical infections caused by E. coli.


Subject(s)
Escherichia coli Infections , Klebsiella Infections , Animals , Anti-Bacterial Agents , Escherichia coli/genetics , Klebsiella Infections/microbiology , Klebsiella pneumoniae/genetics , Plasmids/genetics , Siderophores , Virulence/genetics , beta-Lactamases/genetics
4.
Microbiol Spectr ; 10(2): e0217021, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35315694

ABSTRACT

Coexistence of oqxAB and aac(6')-Ib-cr is often associated with the expression of fluoroquinolone resistance in Salmonella. The actual role of the plasmid-borne oqxAB gene and its regulatory mechanism compared to its chromosomally encoded counterpart in Klebsiella pneumoniae remain unclear We found that cloning of oqxAB gene only or chromosomally encoded oqxABR (ABRc) locus did not lead to an increase of ciprofloxacin (CIP) minimum inhibitory concentration (MIC) in S. Typhimurium, while cloning of the plasmid-encoded oqxABR (ABRp) locus led to a 4-fold increase in CIP MIC, reaching 0.0065 µg/mL. The co-carriage of these constructs with aac(6')-Ib-cr further increased the CIP MIC to 0.25 µg/mL in S. Typhimurium carrying aac(6')-Ib-cr and ABRp. Analysis of the transcription start site sequences showed that the expression level of suppressor protein gene, oqxR, in strains carrying ABRp was lower than that of its chromosomal counterpart due to the truncated promoter region in ABRp. The lower expression of OqxR in ABRp led to the overexpression of OqxAB, which elevated CIP MIC and exhibited a synergistic antimicrobial effect with the aac(6')-Ib-cr gene product to confer intermediate CIP (MIC = 0.25 µg/mL) in S. Typhimurium. Global transcriptional regulators in S. Typhimurium did not seem to play a role in regulating the plasmid-borne oqxAB genes. In conclusion, findings in this work showed that neither aac(6')-Ib-cr nor oqxABRp, but the combination of both genes, could mediate intermediated resistance to fluoroquinolone in Salmonella. The truncated promoter region in the oqxR gene of the plasmid-encoded locus led to the constituted expression of oqxAB genes. IMPORTANCE The transferable mechanisms of quinolone resistance (TMQR) gene, oqxAB, has been widely detected in Salmonella and is commonly associated with aac(6')-Ib-cr. It is thought to be associated with fluoroquinolone resistance, while its ancestor gene from K. pneumoniae is not. This study evaluated the actual role of the plasmid-borne oqxAB genes in Salmonella and showed that it was not able to mediate intermediated resistance to fluoroquinolone and only did so when it coexisted with aac(6')-Ib-cr. Chromosomally encoded oqxABRc from K. pneumoniae was not able to mediate enhanced CIP MIC due to tight regulation by the suppressor oqxR. However, plasmid-encoded oqxABRp enabled oqxAB to be expressed constitutionally due to the truncated promoter region of oqxR, leading to lower expression of the suppressor oqxR. This study clarified the roles of oqxAB and aac(6')-Ib-cr in mediating fluoroquinolone resistance in Salmonella and provides insights into the regulation of plasmid-encoded TMQR determinant, oqxAB.


Subject(s)
Quinolones , Salmonella typhimurium , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Fluoroquinolones/pharmacology , Klebsiella pneumoniae/genetics , Plasmids/genetics , Quinolones/pharmacology , Salmonella typhimurium/genetics
5.
Front Immunol ; 12: 679184, 2021.
Article in English | MEDLINE | ID: mdl-34276666

ABSTRACT

Macrophages play an important role in the host defense mechanism. In response to infection, macrophages activate a genetic program of pro-inflammatory response to kill any invading pathogen, and initiate an adaptive immune response. We have identified RUVBL2 - an ATP-binding protein belonging to the AAA+ (ATPase associated with diverse cellular activities) superfamily of ATPases - as a novel regulator in pro-inflammatory response of macrophages. Gene knockdown of Ruvbl2, or pharmacological inhibition of RUVBL1/2 activity, compromises type-2 nitric oxide synthase (Nos2) gene expression, nitric oxide production and anti-bacterial activity of mouse macrophages in response to lipopolysaccharides (LPS). RUVBL1/2 inhibitor similarly inhibits pro-inflammatory response in human monocytes, suggesting functional conservation of RUVBL1/2 in humans. Transcriptome analysis further revealed that major LPS-induced pro-inflammatory pathways in macrophages are regulated in a RUVBL1/2-dependent manner. Furthermore, RUVBL1/2 inhibition significantly reduced the level of histone H3K4me3 at the promoter region of Nos2 and Il6, two prototypical pro-inflammatory genes, and diminished the recruitment of NF-kappaB to the corresponding enhancers. Our study reveals RUVBL1/2 as an integral component of macrophage pro-inflammatory responses through epigenetic regulations, and the therapeutic potentials of RUVBL1/2 inhibitors in the treatment of diseases caused by aberrant activation of pro-inflammatory pathways.


Subject(s)
ATPases Associated with Diverse Cellular Activities/metabolism , Carrier Proteins/metabolism , DNA Helicases/metabolism , Histones/metabolism , Macrophages/immunology , Macrophages/metabolism , Multiprotein Complexes/metabolism , ATPases Associated with Diverse Cellular Activities/genetics , Animals , Carrier Proteins/genetics , Cytokines/metabolism , DNA Helicases/genetics , Inflammation Mediators/metabolism , Lipopolysaccharides/immunology , Methylation , Mice , Nitric Oxide/metabolism , Protein Processing, Post-Translational , RAW 264.7 Cells
6.
Front Microbiol ; 10: 2809, 2019.
Article in English | MEDLINE | ID: mdl-31866977

ABSTRACT

Acinetobacter baumannii is an important clinical pathogen which often causes fatal infections among seriously ill patients. Treatment options for managing infections caused by this organism have become limited as a result of emergence of carbapenem resistant strains. In the current study, whole genome sequencing, gene expression studies and enzyme kinetics analyses were performed to investigate the underlying carbapenem resistance mechanisms in fourteen clinical A. baumannii strains isolated from two hospitals, one each in Hong Kong and Henan Province, People's Republic of China. A large majority of the A. baumannii strains (11/14) were found to belong to the International Clone II (IC-II), among which six were ST208. Twelve of these strains were carbapenem resistant and found to either harbor bla OXA- 23/bla OXA- 72, or exhibit over-expression of the bla OXA- 51 gene upon ISAba1 insertion. Enzymatic assay confirmed that the OXA variants, including those of bla OXA - 51, exhibited strong carbapenem-degrading activities. In terms of other intrinsic mechanisms, a weak correlation was observed between reduced production of outer membrane porin CarO/expression resistance-nodulation-division (RND) efflux AdeB and phenotypic resistance. This finding implied that over-production of carbapenem-hydrolyzing-class D-ß-lactamases (CHDLs), including the intrinsic bla OXA- 51 gene and the acquired bla OXA- 23 and bla OXA- 24 elements, is the key mechanism of carbapenem resistance in A. baumannii. This view is confirmed by testing the effect of NaCl, a known bla OXA inhibitor, which was found to cause reduction in carbapenem MIC by twofolds to eightfolds, suggesting that inhibiting OXA type carbapenemases represents the most effective strategy to control phenotypic carbapenem resistance in A. baumannii.

SELECTION OF CITATIONS
SEARCH DETAIL
...